Chin. Phys. Lett.  1993, Vol. 10 Issue (7): 441-444    DOI:
Original Articles |
A Study of Weak Laser-DNA Molecule Interaction and Its Chaotic Behaviour
ZHOU Lingyun
Department of Basic Science, Kunming Institute of Technologv, Kunming 650093 also Yunnan lnstitute of Applied Mathematics, Kunrning 650091
Cite this article:   
ZHOU Lingyun 1993 Chin. Phys. Lett. 10 441-444
Download: PDF(160KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The motion equations with the effect of laser-deoxyribonucleic acid (DNA) molecule interaction are advanced. The chaotic behaviour about these equations were studied by Afelnikov’s method. It is found that DNA molecule system can turn into chaotic state under the weak laser action. This result is
helpful for the explanation of laser-induced biological genetic variation effect.
Keywords: 87.50.Eg      02.90.+p     
Published: 01 July 1993
PACS:  87.50.Eg  
  02.90.+p (Other topics in mathematical methods in physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1993/V10/I7/0441
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Lingyun
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 441-444
[2] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 441-444
[3] FAN Hong-Yi, REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel[J]. Chin. Phys. Lett., 2010, 27(5): 441-444
[4] LV Cui-Hong, FAN Hong-Yi,. A New Kind of Integration Transformation in Phase Space Related to Two Mutually Conjugate Entangled-State Representations and Its Uses in Weyl Ordering of Operators[J]. Chin. Phys. Lett., 2010, 27(5): 441-444
[5] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 441-444
[6] LUO Lin, FAN En-Gui. Quasi-Hamiltonian Structure Associated with an Integrable Coupling System[J]. Chin. Phys. Lett., 2009, 26(5): 441-444
[7] GAO Yuan, TANG Xiao-Yan, LOU Sen-Yue,. Nonsensitive Nonlinear Homotopy Approach[J]. Chin. Phys. Lett., 2009, 26(11): 441-444
[8] LUO Lin, FAN En-Gui. A Hierarchy of Differential-Difference Equations and Their Integrable Couplings[J]. Chin. Phys. Lett., 2007, 24(6): 441-444
[9] LIU Yin-Ping, LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2003, 20(3): 441-444
[10] LIU Yin-Ping, LI Zhi-Bin. An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2002, 19(9): 441-444
[11] ZHANG Jie-fang. Multiple Soliton Solutions of the Dispersive Long-Wave Equations[J]. Chin. Phys. Lett., 1999, 16(1): 441-444
[12] LÜ, Xian-qing. Exact Travelling Wave Solutions of Discrete Planar Velocity Boltzmann Models[J]. Chin. Phys. Lett., 1997, 14(8): 441-444
[13] HU Zhan-ning. Remarks on the Three-dimensional Lattice Model[J]. Chin. Phys. Lett., 1996, 13(6): 441-444
[14] HU Zhanning. On the Star-Triangle Relation and the Star-Square Relation in the Baxter-Bazhanov Model[J]. Chin. Phys. Lett., 1995, 12(6): 441-444
[15] ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and Three Hierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 441-444
Viewed
Full text


Abstract