Chin. Phys. Lett.  2001, Vol. 18 Issue (3): 334-336    DOI:
Original Articles |
An Analytical Study for Controlling Chaos in Duffing Oscillator with Weak Periodic Perturbation
FANG Jian-Shu1,2;HAI Wen-Hua2;ZHANG Xi-Li2
1Department of Physics, Zhuzhou Teacher’s College, Zhuzhou 412007 2Department of Physics, Hu’nan Normal University, Changsha 410081
Cite this article:   
FANG Jian-Shu, HAI Wen-Hua, ZHANG Xi-Li 2001 Chin. Phys. Lett. 18 334-336
Download: PDF(374KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We obtain a general unstable periodic solution near the homoclinic orbit of the Duffing oscillator with weak periodic perturbation by using the direct perturbation technique. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractor. The corresponding numerical results show that fitting control parameters into the stability conditions can control chaos in the system, and the phase difference between the two sinusoidal forces added to the Duffing equation plays an important role in controlling chaos.
Keywords: 05.45.+b     
Published: 01 March 2001
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I3/0334
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Jian-Shu
HAI Wen-Hua
ZHANG Xi-Li
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 334-336
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 334-336
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 334-336
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 334-336
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 334-336
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 334-336
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 334-336
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 334-336
[9] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 334-336
[10] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 334-336
[11] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 334-336
[12] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 334-336
[13] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 334-336
[14] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 334-336
[15] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 334-336
Viewed
Full text


Abstract