Chin. Phys. Lett.  2001, Vol. 18 Issue (3): 463-465    DOI:
Original Articles |
Entropy of Vaidya-deSitter Spacetime
LI Xiang; ZHAO Zheng
Department of Physics, Beijing Normal University,Beijing 100875
Cite this article:   
LI Xiang, ZHAO Zheng 2001 Chin. Phys. Lett. 18 463-465
Download: PDF(183KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a statistical model of black hole entropy, the brick-wall method based on the thermal equilibrium in a large scale cannot be applied to the cases out of equilibrium, such as the non-static hole or the case with two horizons. However, the leading term of hole entropy called the Bekenstein-Hawking entropy comes from the contribution of the field near the horizon. According to this idea, the entropy of Vaidya-deSitter spacetime is calculated, A difference from the static case is that the result proportional to the area of horizon relies on a time-dependent cutoff. The condition of local equilibrium near the horizon is used as a working postulate.
Keywords: 97.60.Lf      04.20.-q     
Published: 01 March 2001
PACS:  97.60.Lf (Black holes)  
  04.20.-q (Classical general relativity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I3/0463
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xiang
ZHAO Zheng
Related articles from Frontiers Journals
[1] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 463-465
[2] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 463-465
[3] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 463-465
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 463-465
[5] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 463-465
[6] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 463-465
[7] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 463-465
[8] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 463-465
[9] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 463-465
[10] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 463-465
[11] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 463-465
[12] Atul Tyagi, Keerti Sharma. Bianchi Type-V Magnetized String Cosmological Model with Variable Magnetic Permeability for Viscous Fluid distribution[J]. Chin. Phys. Lett., 2010, 27(8): 463-465
[13] Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity[J]. Chin. Phys. Lett., 2010, 27(7): 463-465
[14] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 463-465
[15] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 463-465
Viewed
Full text


Abstract