Chin. Phys. Lett.  2001, Vol. 18 Issue (4): 469-472    DOI:
Original Articles |
New Applications of the <λ| Representation in Studying the Angular Momentum of Laughlin State Vector
FAN Hong-Yi1,2;LIN Jing-Xian2
1Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030 2Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
FAN Hong-Yi, LIN Jing-Xian 2001 Chin. Phys. Lett. 18 469-472
Download: PDF(226KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use the complete and orthonormal <λ| representation (Phys. Lett. A126 (1987) 150) constructed in terms of guiding centers K± = MΩ/2(x0 iy0) and kinetic momenta II± describing an electron in a uniform magnetic field, to identify that the Laughlin state vector is N i < j(K+i - K+j)m ||0 >, where ||0 > is annihilated by ( II-,K-). Following this, we further employ the <λ| representation to derive the angular momentum of the Laughlin ground state and excited state in a direct and convenient way. This approach for studying some properties of the Laughlin state seems to be new.


Keywords: 03.65.Bz     
Published: 01 April 2001
PACS:  03.65.Bz  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I4/0469
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Hong-Yi
LIN Jing-Xian
Related articles from Frontiers Journals
[1] CUI Bo, WU Song-Lin, YI Xue-Xi. Mean-Field Dynamics of a Two-Mode Bose-Einstein Condensate Subject to Decoherence[J]. Chin. Phys. Lett., 2010, 27(7): 469-472
[2] ZHAN You-Bang, ZHANG Qun-Yong, WANG Yu-Wu, MA Peng-Cheng. Schemes for Teleportation of an Unknown Single-Qubit Quantum State by Using an Arbitrary High-Dimensional Entangled State[J]. Chin. Phys. Lett., 2010, 27(1): 469-472
[3] XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 469-472
[4] MA Shan-Jun. Optical Four-Wave Mixing Operator, Fresnel Operators and Three-Mode Entangled State Representation[J]. Chin. Phys. Lett., 2009, 26(6): 469-472
[5] SHAO Dan, SHAO Liang, SHAO Chang-Gui, NODA Huzio. Entanglement of Area Quantums in Quantized Space[J]. Chin. Phys. Lett., 2008, 25(1): 469-472
[6] LU Dao-Ming, ZHENG Shi-Biao. Establishment of Entanglement for Two Atoms Trapped in Two Distant Bad Cavities[J]. Chin. Phys. Lett., 2007, 24(3): 469-472
[7] JI Hua, ZHAN Xiao-Gui, ZENG Hao-Sheng. Controlled Teleportation of Multi-Qudit Quantum Information[J]. Chin. Phys. Lett., 2007, 24(10): 469-472
[8] ZHENG Shi-Biao. Teleportation of Quantum States through Mixed Entangled Pairs[J]. Chin. Phys. Lett., 2006, 23(9): 469-472
[9] YAO Chun-Mei. Quantum Remote Control of Unitary Operations on a Qubit of Pure Entangled States[J]. Chin. Phys. Lett., 2006, 23(3): 469-472
[10] ZHENG Shi-Biao. Production of Three-Dimensional Maximal Entanglement for Two Cavity Modes[J]. Chin. Phys. Lett., 2006, 23(3): 469-472
[11] ZHAN Xiao-Gui, LI Hong-Mei, ZENG Hao-Sheng. Teleportation of Multi-qudit Entangled States[J]. Chin. Phys. Lett., 2006, 23(11): 469-472
[12] CHEN Chang-Yong, , GAO Ke-Lin,. Construction of Controlled-NOT Gate with Thermal Ions[J]. Chin. Phys. Lett., 2005, 22(4): 469-472
[13] ZHENG Shi-Biao. Generation of Three-Dimensional Entangled States for Two Atoms Trapped in Different Cavities[J]. Chin. Phys. Lett., 2005, 22(12): 469-472
[14] ZHENG Shi-Biao. Universal Quantum Cloning Machine with Atoms in an Optical Cavity[J]. Chin. Phys. Lett., 2004, 21(9): 469-472
[15] ZHAO Hai-Jun, FANG Xi-Ming. Does the Quantum Player Always Win the Classical One?[J]. Chin. Phys. Lett., 2004, 21(8): 469-472
Viewed
Full text


Abstract