Chin. Phys. Lett.  2001, Vol. 18 Issue (5): 643-645    DOI:
Original Articles |
Temperature-Strain Discrimination Sensor Using a WDM Chirped in-Fibre Bragg Grating and an Extrinsic Fabry-Pérot
RAO Yun-Jiang1;ZENG Xiang-Kai1;ZHU Yong1;WANG Yi-Ping1;ZHU Tao1;RAN Zeng-Ling1;ZHANG Lin2;IAN Bennion2
1Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 2Department of Electronic Engineering, Aston University, Birmingham B4 7ET, United Kingdom
Cite this article:   
RAO Yun-Jiang, ZENG Xiang-Kai, ZHU Yong et al  2001 Chin. Phys. Lett. 18 643-645
Download: PDF(0KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel fibre-optic sensing system used for temperature-strain
discrimination is presented. This system consists of an extrinsic Fabry-Perot interferometric sensor (EFPI) and a chirped in-fibre Bragg grating (CFBG) in series. The EFPI and the CFBG are wavelength-division-multiplexed (WDM) to provide strain and temperature information, respectively. The wavelength-shift of the CFBG induced by temperature change in the 1.55μm region is interrogated with an intensity-based scheme, allowing fast measurement of temperature. The cavity length change of the EFPI is measured in the 1.3μm region,
allowing strain to be measured without cross-talk from the temperature sensor, i.e. the CFBG. Experimental results show that the achieved accuracies for strain and temperature measurement are ±20 x 10-6 and ±2°C, respectively.
Keywords: 42.81.Pa      42.81.Cn     
Published: 01 May 2001
PACS:  42.81.Pa (Sensors, gyros)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I5/0643
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAO Yun-Jiang
ZENG Xiang-Kai
ZHU Yong
WANG Yi-Ping
ZHU Tao
RAN Zeng-Ling
ZHANG Lin
IAN Bennion
Related articles from Frontiers Journals
[1] LIU Cheng-Xiang, ZHANG Li, WU Xu, RUAN Shuang-Chen. High-Stability Superfluorescent Fiber Source Based on an Er3+-Doped Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2012, 29(6): 643-645
[2] HONG Ling-Fei**, ZHANG Chun-Xi, FENG Li-Shuang, YU Huai-Yong, LEI Ming. Frequency Modulation Induced by using the Linear Phase Modulation Method used in a Resonator Micro-optic Gyro[J]. Chin. Phys. Lett., 2012, 29(1): 643-645
[3] SHANG Chao, WU Chong-Qing**, LI Zheng-Yong, YANG Shuang-Shou** . A New Distributed Measurement of Birefringence Vectors by P-OTDR Assisted by a High Speed Polarization Analyzer[J]. Chin. Phys. Lett., 2011, 28(9): 643-645
[4] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 643-645
[5] LUO Tao, GU Zheng-Tian** . A New Type of Absorbance Sensors Based on Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2011, 28(5): 643-645
[6] LI Ming-Shan, YANG Chang-Xi. Laser-Induced Silver Nanoparticles Deposited on Optical Fiber Core for Surface-Enhanced Raman Scattering[J]. Chin. Phys. Lett., 2010, 27(4): 643-645
[7] RAO Yun-Jiang, XU Bing, RAN Zeng-Ling, GONG Yuan. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers[J]. Chin. Phys. Lett., 2010, 27(2): 643-645
[8] PAN Er-Ming, RUAN Shuang-Chen, GUO Chun-Yu, WANG Yun-Cai, WEI Hui-Feng. Supercontinuum Generation with Output Power of 1.7W Pumped by a Picosecond Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(10): 643-645
[9] LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi . Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector[J]. Chin. Phys. Lett., 2010, 27(10): 643-645
[10] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 643-645
[11] SUN Bao, CHEN Fu-Shen. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors[J]. Chin. Phys. Lett., 2009, 26(2): 643-645
[12] YANG Shuang-Shou, WU Chong-Qing, LI Zheng-Yong, ZHANG Ren-Yuan, MENG Qing-Wen. Distributed Measurement of Birefringence by P-OTDR Assisted with Piezoelectric Polarization Controller[J]. Chin. Phys. Lett., 2008, 25(9): 643-645
[13] CAO Lei, HUANG Yi-Dong, MAO Xiao-Yu, LI Fei, ZHANG Wei, PENG Jiang-De. Fluid Sensor Based on Transmission Dip Caused by Mini Stop-Band in Photonic Crystal Slab[J]. Chin. Phys. Lett., 2008, 25(6): 643-645
[14] WANG Ze-Feng, HUNG Yong-Ming, MENG Zhou, NI Ming. Experimental Investigation on a Fibre-Optic Hydrophone with a Cylindrical Helmholtz Resonator[J]. Chin. Phys. Lett., 2008, 25(5): 643-645
[15] YUAN Jin-Hui, HOU Lan-Tian, ZHOU Gui-Yao, WEI Dong-Bin, CHEN Chao, WANG Qing-Yue, HU Ming-Lie, LIU Bo-Wen. Numerical Simulation and Experimental Analysis of Photonic Band Gap in Hollow-Core Photonic Crystal Fibres[J]. Chin. Phys. Lett., 2008, 25(5): 643-645
Viewed
Full text


Abstract