Chin. Phys. Lett.  2001, Vol. 18 Issue (6): 740-742    DOI:
Original Articles |
Thermo-field Dynamics of the Casimir Effect and Its Quantum Deformation
JING Hui;XIE Bing-Hao;CHEN Jing-Ling
Theoretical Physics Division, Nankai Institute of Mathematics, Nankai University, Tianjin 300071 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
JING Hui, XIE Bing-Hao, CHEN Jing-Ling 2001 Chin. Phys. Lett. 18 740-742
Download: PDF(186KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Casimir effect of the deformed cavity field at finite temperature is investigated by generalizing the thermo field dynamics formalism into q-deformed version. It has been shown that the impact of q-deformation on the Casimir force only manifests in the finite temperature case and the expression for the ideal pure vacuum remains unchanged, which just coincides with the suggestions of Man’ko et al. [Phys. Lett. A 176(1993 173] about the nature of q-oscillators as the nonlinear vibrations of electromagnetic field.
Keywords: 12.20.Ds      05.30.-d     
Published: 01 June 2001
PACS:  12.20.Ds (Specific calculations)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I6/0740
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JING Hui
XIE Bing-Hao
CHEN Jing-Ling
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 740-742
[2] XIE Bai-Song, Mohamedsedik Melike, Dulat Sayipjamal. Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field[J]. Chin. Phys. Lett., 2012, 29(2): 740-742
[3] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 740-742
[4] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 740-742
[5] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 740-742
[6] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 740-742
[7] ZHOU Hai-Qing. Two-Photon-Exchange Correction to Elastic ep Scattering in the Forward Angle Limit[J]. Chin. Phys. Lett., 2009, 26(6): 740-742
[8] DUAN Hai-Bin, XING Zhi-Hui. Improved Quantum Evolutionary Computation Based on Particle SwarmOptimization and Two-Crossovers[J]. Chin. Phys. Lett., 2009, 26(12): 740-742
[9] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 740-742
[10] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 740-742
[11] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 740-742
[12] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space[J]. Chin. Phys. Lett., 2008, 25(10): 740-742
[13] ZHU Kun-Yan, TAN Lei, GAO Xiang, WANG Daw-Wei. Quantum Fluids of Self-Assembled Chains of Polar Molecules at Finite Temperature[J]. Chin. Phys. Lett., 2008, 25(1): 740-742
[14] ZHANG Qiu-Lan, GU Shi-Jian. Spin Transport Properties of the One-Dimensional Heisenberg Chain: Bethe-Ansatz Solution with Twist Boundary Conditions[J]. Chin. Phys. Lett., 2007, 24(5): 740-742
[15] BI Qiao,. Fluctuation of Quantum Information Density in Curved Time--Space[J]. Chin. Phys. Lett., 2007, 24(4): 740-742
Viewed
Full text


Abstract