Chin. Phys. Lett.  2001, Vol. 18 Issue (7): 854-856    DOI:
Original Articles |
Energy Levels of a Positronium Negative Ion
DUAN Bin;GU Xiao-Yan;MA Zhong-Qi
Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918(4), Beijing 100039
Cite this article:   
DUAN Bin, GU Xiao-Yan, MA Zhong-Qi 2001 Chin. Phys. Lett. 18 854-856
Download: PDF(193KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy levels of a positronium negative ion are calculated
directly from the Schrödinger equation. After removing the
translational and rotational degrees of freedom, only three internal variables are involved in both functions and equations.
The singularity of the solution is eliminated by choosing the right internal variables, and the series in calculation converges very fast.
Keywords: 03.65.Ge      32.30.-r     
Published: 01 July 2001
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  32.30.-r (Atomic spectra?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I7/0854
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Bin
GU Xiao-Yan
MA Zhong-Qi
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 854-856
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 854-856
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 854-856
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 854-856
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 854-856
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 854-856
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 854-856
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 854-856
[9] YIN Cong**, QIAN Jin, ZHANG Xiao-Ping, SHI Chun-Ying, WANG Han-Ping, HUANG Sheng-Ye . Frequency Stabilization Using Polarization Spectroscopy and Cr-He Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2011, 28(9): 854-856
[10] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 854-856
[11] YUN Chen-Xia, TENG Hao**, ZHANG Wei, WANG Li-Feng, ZHAN Min-Jie, HE Xin-Kui, WANG Bing-Bing, WEI Zhi-Yi** . Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses[J]. Chin. Phys. Lett., 2011, 28(7): 854-856
[12] DING Qi-Yong, **, ZHANG Song-Bin, WANG Jian-Guo . Simulation of Hydrogen Emission Spectrum in Debye Plasmas[J]. Chin. Phys. Lett., 2011, 28(5): 854-856
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 854-856
[14] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 854-856
[15] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 854-856
Viewed
Full text


Abstract