Chin. Phys. Lett.  2002, Vol. 19 Issue (1): 4-6    DOI:
Original Articles |
Quantum Multiple Access Channel
HOU Guang1;HUANG Min-Xin2;ZHANG Yong-De1,3
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026 2Special Class for Gifted Young, University of Science and Technology of China, Hefei 230026 3CCAST (World Laboratory), P.O. Box 8730, Beijing 100080
Cite this article:   
HOU Guang, HUANG Min-Xin, ZHANG Yong-De 2002 Chin. Phys. Lett. 19 4-6
Download: PDF(202KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider the transmission of classical information over a quantum channel by many senders, which is a generalization of the two-sender case. The channel capacity region is shown to be a convex hull bound by the Von Neumann entropy and the conditional Von Neumann entropies. The result allows a reasonable distribution of channel capacity over the senders.
Keywords: 03.65.Ca      03.80.+r      03.65.Ge      02.30.Mv     
Published: 01 January 2002
PACS:  03.65.Ca (Formalism)  
  03.80.+r  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Mv (Approximations and expansions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I1/04
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Guang
HUANG Min-Xin
ZHANG Yong-De
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 4-6
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 4-6
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 4-6
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 4-6
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 4-6
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 4-6
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 4-6
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 4-6
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 4-6
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 4-6
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 4-6
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 4-6
[13] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 4-6
[14] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 4-6
[15] FAN Hong-Yi, CHEN Jun-Hua, WANG Tong-Tong. Squeezing-Displacement Dynamics for One-Dimensional Potential Well with Two Mobile Walls where Wavefunctions Vanish[J]. Chin. Phys. Lett., 2010, 27(5): 4-6
Viewed
Full text


Abstract