Chin. Phys. Lett.  2002, Vol. 19 Issue (1): 87-90    DOI:
Original Articles |
Quintic Nonlinearity Induced Solitary Waves in Plasma Physics
LIU Hong1,2,3;HE Xian-Tu2;LOU Sen-Yue1
1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 2Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 3Graduate School, China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088
Cite this article:   
LIU Hong, HE Xian-Tu, LOU Sen-Yue 2002 Chin. Phys. Lett. 19 87-90
Download: PDF(243KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quintic nonlinearity is important in the study of the nonlinear interaction between Langmuir waves and electrons in plasma. Using the pseudoenergy approach, five types of solitary wave solutions are obtained explicitly. Only one of these is the modification of the soliton of the cubic nonlinear Schrödinger equation and can be treated perturbatively. However, other four types of solitary wave solutions are all induced by the quintic nonlinearity and cannot be treated perturbatively from the solutions of the cubic nonlinear Schrödinger equation.
Keywords: 52.35.Sb      05.45.Jn      02.30.Ik     
Published: 01 January 2002
PACS:  52.35.Sb (Solitons; BGK modes)  
  05.45.Jn (High-dimensional chaos)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I1/087
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hong
HE Xian-Tu
LOU Sen-Yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 87-90
[2] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 87-90
[3] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 87-90
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 87-90
[5] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 87-90
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 87-90
[7] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 87-90
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 87-90
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 87-90
[10] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 87-90
[11] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 87-90
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 87-90
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 87-90
[14] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 87-90
[15] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 87-90
Viewed
Full text


Abstract