Chin. Phys. Lett.  2004, Vol. 21 Issue (6): 1020-1023    DOI:
Original Articles |
Localized Excitations in (3+1) Dimensions: Dromions, Ring-Shape and Bubble-Like Solitons
LOU Sen-Yue
Department of Physics, Ningbo University, Ningbo 315211 Department of Physics, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
LOU Sen-Yue 2004 Chin. Phys. Lett. 21 1020-1023
Download: PDF(380KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of infinite-dimensional Kac-Moody-Virasoro symmetry group transformation, rich localized (3+1)-dimensional excitations such as dromions, ring-shape and bubble-like excitations are obtained for a matrix system which is produced by extending the Lax pair of the celebrated self-dual Yang-Mills field. Abundant (3+1)-dimensional localized excitations can also be found in other types of nonlinear systems.

Keywords: 05.45.Yv      02.30.Ik      11.10.Lm      02.20.Tw     
Published: 01 June 2004
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  02.20.Tw (Infinite-dimensional Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I6/01020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Sen-Yue
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1020-1023
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1020-1023
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1020-1023
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1020-1023
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1020-1023
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 1020-1023
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1020-1023
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1020-1023
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1020-1023
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1020-1023
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 1020-1023
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 1020-1023
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1020-1023
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1020-1023
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1020-1023
Viewed
Full text


Abstract