CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of Laser Field and Mechanical Force on Deoxyribonucleic Acid Melting |
PAN Bing-Yi, ZHANG Ling-Yun, DOU Shuo-Xing, WANG Peng-Ye |
Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
PAN Bing-Yi, ZHANG Ling-Yun, DOU Shuo-Xing et al 2010 Chin. Phys. Lett. 27 078701 |
|
|
Abstract We propose a physics method to study the effect of laser field and mechanical force on the melting process of double-stranded deoxyribonucleic acid (DNA). A two-dimensional lattice model is established for DNA molecules stuck on the surface, and the stretching energy of the hydrogen bond and stacking energy for each DNA molecule are calculated by using a nonlinear potential. A real-time algorithm is employed to deal with the dynamics process of DNA melting. Numerical results explain the experimental observations. The spatial distribution of the laser field determines the sequences of DNA melting. The simulation has shown the dependence of the final number of melted DNA on the laser field and mechanical force.
|
Keywords:
87.10.-e
87.15.-v
87.64.kv
|
|
Received: 21 March 2010
Published: 28 June 2010
|
|
PACS: |
87.10.-e
|
(General theory and mathematical aspects)
|
|
87.15.-v
|
(Biomolecules: structure and physical properties)
|
|
87.64.kv
|
(Fluorescence)
|
|
|
|
|
[1] Liverpool T B, Harris S A and Laughton C A 2008 Phys. Rev. Lett. 100 238103 [2] Kim J H, Puder M and Soberman R J 1996 Biotechniques 20 954 [3] Garel T, Monthus C and Orland H 2001 Europhys. Lett. 55 132 [4] Bugaut A and Balasubramanian S 2008 Biochemistry 47 689 [5] Paiva A M and Sheardy R D 2004 Biochemistry 43 14218 [6] Drobnak I, Serucnik M, Lah J and Vesnaver G 2007 Acta Chim. Slovenica 54 445 [7] Breslauer K J, Frank R, Blocker H and Marky L A 1986 Proc. Natl. Acad. Sci. U.S.A. 83 3746 [8] Koumoto K, Ochiai H and Sugimoto N 2008 Chem. Lett. 37 864 [9] Pan B Y, Zhang L Y, Dou S X and Wang P Y 2009 Biochem. Biophys. Res. Commun. 388 137 [10] Nakano S, Karimata H, Ohmichi T and Kawakami J 2004 J. Am. Chem. Soc. 126 14330 [11] Yamashita K, Miyazaki M, Yamaguchi Y, Nakamura H and Maeda H 2007 J. Phys. Chem. B 111 6127 [12] Yakovchuk P, Protozanova E and Frank-Kamenetskii M D 2006 Nucleic Acids Research 34 1082 [13] Brotschi C, Haberli A and Leumann C J 2001 Angew. Chem.: Int. Ed. 40 3012 [14] Grinza P and Mossa A 2004 Phys. Rev. Lett. 92 158102 [15] Jost D and Everaers R 2008 Biophys. J. 96 1056 [16] Zhang L Y and Wang P Y 2008 Chin. Phys. Lett. 25 3818 [17] Beers W, Cerami A and Reich E 1967 Proc. Natl. Acad. Sci. U.S.A. 58 1624 [18] Wu Z Y, Feng J F and Wu X S 2009 Chin. Phys. Lett. 26 028703 [19] Coluzzi B 2006 Phys. Rev. E 73 011911 [20] Grigoryan A V, Mamasakhlisov E, Buryakina T Y, Tsarukyan A V, Benight A S and Morozov V F 2007 J. Chem. Phys. 126 165101 [21] Zhao W J, Weng Y Q and Fu J L 2007 Chin. Phys. Lett. 24 2773 [22] Zhang H Y, Liang R Q, Jin K J, Lu H B, Zhu X D, Zhou Y L, Ruan K C and Yang G Z 2006 Chin. Phys. Lett. 23 1032 [23] Hu D S, Zhu C P, Zhang L Q, He D R and Wang B H 2008 Chin. Phys. Lett. 25 1822 [24] Jeffrey G A and Saenger W 1994 Hydrogen Bonding in Biological Structures (Berlin: Springer) [25] Poland D and Scheraga H A 1970 Theory of Helix-Coil Transition in Biopolymers (New York: Academic) [26] Marenduzzo D, Trovato A and Maritan A 2001 Phys. Rev. E 64 031901 [27] Yogo A et al 2009 Appl. Phys. Lett. 94 181502 [28] Tsen S W D, Wu C Y, Meneshian A, Pai S I, Hung C F and Wu T C 2009 J. Biomed. Sci. 16 36 [29] Ichikawa M, Ichikawa H, Yoshikawa K and Kimura Y 2001 Phys. Rev. Lett. 99 148104 [30] Kafri Y, Mukamel D and Peliti L 2000 Phys. Rev. Lett. 85 4988 [31] Dauxois T, Peyrard M and Bishop A R 1993 Phys. Rev. E 47 R44
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|