CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Preparation and Photocurrent Performance of Highly Ordered Titania Nanotube Implanted with Ag/Cu Metal Ions |
LIAO Bin, WU Xian-Ying, LIANG Hong, ZHANG Xu, LIU An-Dong |
Key Laboratory for Radiation Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Radiation Center, Beijing Normal University, Beijing 100875 |
|
Cite this article: |
LIAO Bin, WU Xian-Ying, LIANG Hong et al 2010 Chin. Phys. Lett. 27 077103 |
|
|
Abstract Ag/Cu-doped titania nanotubes (Ag/TiNT, Cu/TiNT) are prepared by a metal vapor vacuum arc implanter. A scanning electronic microscope is employed for microstructural characterization. The photo-current performance of doped titania nanotubes under UV and visible light is tested by an electrochemical workstation CS300UA, the results show that the absorption edge of both Ag/TiNT and Cu/TiNT samples shifts to the visible light region and the band gap becomes narrower. Ag/TiNT possesses better photo-current ability than Cu/TiNT under UV and visible light. Titania doped with Ag and Cu metal ions is also studied based on the linearized augmented plane-wave method implemented by WIEN2k package, the result becomes better with the experimental performance.
|
Keywords:
71.15.Mb
73.63.Fg
81.05.Je
|
|
Received: 16 May 2010
Published: 28 June 2010
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.63.Fg
|
(Nanotubes)
|
|
81.05.Je
|
(Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))
|
|
|
|
|
[1] Hamilton E J M et al 1993 Science 260 659 [2]Chopra N G et al 1995 Science 269 966 [3] Iijima S et al 1993 Nature 363 603 [4]Huang Y et al 1999 Adv. Mater. 11 627 [5] Quan X et al 2005 Environ. Sci. Technol. 39 3770 [6] Krishna V et al 2005 Process Safety Environ. Protect. 83 393 [7] Yu Y et al 2005 Appl. Catal. A 289 186 [8] Nakahira A et al 2005 Jpn. J. Appl. Phys. II 44 L690 [9] Idakiev V et al 2005 Appl. Catal. A 281 149 [10]Wang M et al 2005 J. Solid State Chem. 178 1996 [11] Gao X P et al 2005 Electrochem Solid State Lett. 8 A26 [12] Tatarenko N I et al 2001 Solid State Electron. 45 1009 [13] Tun Z et al 1999 J. Electrochem. Soc. London 146 988 [14] Carrara S et al 2005 Sensors and Actuators B 109 221 [15] Varghese O K et al 2004 J. Nanosci Nanotechnol. 4 733 [16] Gil-Sung K 2006 Electrochem. Commun. 8 961 [17] Chou C S et al 2009 Powder Technol. 194 95 [18] Vishal K et al 2008 Int. J. Hydrogen Energy 33 5369 [19] Xiao Y M et al 2010 Electrochim. Acta 55 4573 [20] Kang Q et al 2008 Bioelectrochemistry 74 62 [21] Chen X Q et al 2008 Chin. Sci. Bull. 53 1983 [22] Park J H et al 2006 Nano Lett. 6 24 [23] Sun L et al 2009 Solar Energy Mater. Solar Cells 93 1875 [24] Chen S G et al 2006 J. Photochem. Photobiol. A: Chem. 177 177 [25] Paramasivam I et al 2007 Chem. Phys. Lett. 445 233 [26] Guan X M et al 2005 Chin. Phys. Lett. 22 2651 [27] Guan X X et al 1998 Chin. Phys. Lett. 15 489 [28] Meng X J et al 2005 Chin. Phys. Lett. 22 310 [29] Hohenberg P et al 1964 Phys. Rev. 136 B864 [30] Heine V et al 1965 Phys. Rev. A 138 1689
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|