FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Laser Resistance of Ta2O5/SiO2 and ZrO2/SiO2 Optical Coatings under 2μm Femtosecond Pulsed Irradiation |
LIU Na1,2, WANG Ying-Jian1, ZHOU Ming1,2, JING Xu-Feng1,2, WANG Yan-Zhi1,2, CUI Yun1, JIN Yun-Xia1 |
1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2Graduate School of Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
LIU Na, WANG Ying-Jian, ZHOU Ming et al 2010 Chin. Phys. Lett. 27 074215 |
|
|
Abstract Ta2O5/SiO2 and ZrO2/SiO2 high reflecting (HR) coatings are prepared by ion beam sputtering and electron beam evaporation, respectively. The laser-induced damage thresholds (LIDTs) of these samples are investigated with 2 μm femtosecond pulse lasers (80 fs, 1 kHz). It is found that the Ta2O5/SiO2 HR coating has a higher capability of laser damage resistance than the ZrO2/SiO2 HR coating in the 2 μm femtosecond regime. The scanning electron microscope results show that the damage sites of the ZrO2/SiO2 HR coating have a relatively porous structure, the loose structure of coatings will provide more sites for water molecules, and the LIDTs of HR coatings will be reduced as a result of the strong water absorption at the wavelength of 2 μm.
|
Keywords:
42.79.Wc
68.65.Ac
42.65.Re
|
|
Received: 14 April 2010
Published: 28 June 2010
|
|
PACS: |
42.79.Wc
|
(Optical coatings)
|
|
68.65.Ac
|
(Multilayers)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
|
|
|
[1] Wang Q et al 2009 Opt. Lett. 34 3616 [2] Mackenzie J I et al 2001 Electron. Lett. 37 898 [3] Wang D L et al 2001 Chin. Phys. Lett. 18 65 [4] Xu C et al 2008 Chin. J. Lasers 35 1595(in Chinese) [5] Cho H J and Hwangbo C K 1996 Appl. Opt. 35 5545 [6] ISO 11254-2:2000 Laser and Laser-Related Equipment: Determination of Laser-Induced Damage Threshold of Optical Surface part 2: S-on-1 test [7] Ben-Yakar A and Byer R L 2004 J. Appl. Phys. 96 5316 [8] Weber M J 2002 Handbook of Optical Materials (New York: Baker and Taylor) [9] Yuan L et al 2007 J. Opt. Soc. Am. B 24 538 [10] Mero M, Liu J and Rudolph W 2005 Phys. Rev. B 71 115 [11] Yuan L, Zhao Y A, He H B and Shao J D 2007 Chin. Opt. Lett. 5 S257 [12] H A Macleod 1986 Thin-Film Optical Filters (Bristol: IOP) p 462 [13] Hale G M and Querry M R 1973 Appl. Opt. 12 555 [14] Tang J F, Gu P F, Liu X and Li H F 2006 Modern Optical Thin Film Technology (Hangzhou: Zhejiang University Press) p 325 (in Chinese) [15] Keldysh L V 1965 Sov. Phys. JETP 20 1307 [16] Starke K et al 2004 Proc. SPIE 5273 501 [17] Jupé M et al 2009 Opt. Express 17 12269 [18] Li M et al 1999 Phys. Rev. Lett. 82 2394 [19] Gruzdev V E 2005 Proc. SPIE 5647 480 [20] Sudrie L et al 2002 Phys. Rev. Lett. 89 186601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|