NUCLEAR PHYSICS |
|
|
|
|
Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects |
XIANG Wen-Chang1,3, WANG Sheng-Qin2, ZHOU Dai-Cui1 |
1Institute of Particle Physics, Huazhong Normal University, Wuhan 430079 2Physics Teaching Research Group, Basic Course Teaching Department, Hunan Institute of Technology, Hengyang 421002 3Department of Physics, The University of South Dakota, Vermillion, SD 57069, USA |
|
Cite this article: |
XIANG Wen-Chang, WANG Sheng-Qin, ZHOU Dai-Cui 2010 Chin. Phys. Lett. 27 072502 |
|
|
Abstract We study the pseudo-rapidity distribution of hadron multiplicities of high energy Pb+Pb collisions by using color glass condensate dynamics at LHC/ALICE in the fixed coupling case. It is found that after including the pomeron loop effects the charged hadron multiplicities at central rapidity are about 1500 for central Pb+Pb collisions, which are significantly smaller than the saturation based calculations,~1700÷2500 and compatible with that based on a study of multiplicities in the fragmentation region.
|
Keywords:
25.75.-q
25.75.Nq
12.38.Aw
|
|
Received: 02 January 2010
Published: 28 June 2010
|
|
PACS: |
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
25.75.Nq
|
(Quark deconfinement, quark-gluon plasma production, and phase transitions)
|
|
12.38.Aw
|
(General properties of QCD (dynamics, confinement, etc.))
|
|
|
|
|
[1] Kharzeev D and Nardi M 2001 Phys. Lett. B 507 121 [2] Kharzeev D and Levin E 2001 Phys. Lett. B 523 79 [3] Kharzeev D et al 2005 Nucl. Phys. A 747 609 [4] Xiang W C 2010 Phys. Rev. D 81 094004 [5] Kozlov M et al 2007 J. High Energy Phys. 10 20 [6] Xiang W C 2009 Nucl. Phys. A 820 303C [7] Iancu E et al 2004 Phys. Lett. B 590 199 [8] Iancu E et al 2005 Phys. Lett. B 606 342 [9] Marquet C et al 2006 Phys. Lett. B 639 635 [10] Mueller A H and Shoshi A 2004 Nucl. Phys. B 692 175 [11] Brunet E et al 2005 Phys. Rev. E 73 056126 [12] Breitweg J et al (ZEUS collaboration) 2000 Phys. Lett. B 487 53 Chekanov S et al (ZEUS collaboration) 2001 Eur. Phys. J. C 21 443 Adloff C et al (H1 collaboration) 2001 Eur. Phys. J. C 21 33 [13] Salam G P 1998 J. High Energy Phys. 07 019 Ciafaloni M et al 1999 Phys. Rev. D 60 114036 [14] Iancu E et al 2007 Nucl. Phys. A 786 131 [15] Soyez G 2005 Phys. Rev. D 72 016007 [16] Xiang W C et al 2005 Chin. Phys. Lett. 22 72 [17] Xiang W C et al 2008 Chin. Phys. Lett. 25 3912 [18] Xiang W C et al 2007 Mod. Phys. Lett. A 22 1381 [19] Xiang W C et al 2005 Eur. Phys. J. A 25 75 [20] Liu J et al 2006 Chin. Sci. Bull. 51 139 [21] Mao Y X et al 2007 Int. J. Mod. Phys. E 16 2130 [22] Zhang X M et al 2007 Int. J. Mod. Phys. E 16 2123 [23] Armesto N et al 2008 J. High Energy Phys. 02 048 [24] Sun J X et al 2010 Chin. Phys. Lett. 27 032503 [25] Zhou F C et al 2010 Chin. Phys. Lett. 27 052503 [26] Back B B et al (PHOBOS collaboration) 2001 Phys. Rev. Lett. 87 102303 [27] Gelis F et al 2006 Eur. Phys. J. C 48 489 [28] Albacet J L 2007 Phys. Rev. Lett. 99 262301 [29] Kozlov M et al 2007 Nucl. Phys. A 792 170 [30] Xiang W C 2009 Phys. Rev. D 79 014012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|