Chin. Phys. Lett.  1999, Vol. 16 Issue (3): 167-168    DOI:
Original Articles |
A Crisis with a Special Scaling Behavior
DING Xiao-ling1;WU Shun-guang2;YIN Yue-cai3;HE Da-ren1,4
1Department of Physics, Teachers College, Yangzhou University, Yangzhou 225002 2Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 4Department of Physics, Shenyang Teachers College, Shenyang 110031 4CCAST (World Laboratory), P. O. Box 8730, Beijing 100080
Cite this article:   
DING Xiao-ling, WU Shun-guang, YIN Yue-cai et al  1999 Chin. Phys. Lett. 16 167-168
Download: PDF(173KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A kind of crisis with special scaling properties has been observed in a discontinuous map. The crisis happens via a collision between a discontinuity of the mapping function and an unstable periodic orbit locating on the basin boundary of the chaotic attractor. The scaling property of the crisis is <τ>∝ ∈-1.8, where <τ> and ∈ stand for the average characteristic time and the control parameter value crossing the critical point, respectively.


Keywords: 05.45.+b     
Published: 01 March 1999
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I3/0167
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Xiao-ling
WU Shun-guang
YIN Yue-cai
HE Da-ren
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 167-168
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 167-168
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 167-168
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 167-168
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 167-168
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 167-168
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 167-168
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 167-168
[9] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 167-168
[10] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 167-168
[11] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 167-168
[12] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 167-168
[13] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 167-168
[14] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 167-168
[15] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 167-168
Viewed
Full text


Abstract