Chin. Phys. Lett.  2000, Vol. 17 Issue (10): 743-745    DOI:
Original Articles |
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
SUN Cheng-Hai
State Key Laboratory of Tkibology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
SUN Cheng-Hai 2000 Chin. Phys. Lett. 17 743-745
Download: PDF(212KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, no special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated.
Keywords: 47.40.-x      51.20.+d     
Published: 01 October 2000
PACS:  47.40.-x (Compressible flows; shock waves)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I10/0743
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Cheng-Hai
Related articles from Frontiers Journals
[1] WANG Guo-Lei, LU Xi-Yun. Large-Eddy Simulation of Underexpanded Supersonic Swirling Jets[J]. Chin. Phys. Lett., 2012, 29(6): 743-745
[2] CHEN Shi-Qiang, WANG Hai-Xing. Transport Properties of Lithium Plasma[J]. Chin. Phys. Lett., 2012, 29(2): 743-745
[3] TENG Hong-Hui**, JIANG Zong-Lin . Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model[J]. Chin. Phys. Lett., 2011, 28(8): 743-745
[4] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 743-745
[5] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 743-745
[6] L. P. Singh, S. D. Ram**, D. B. Singh . Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2011, 28(11): 743-745
[7] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 743-745
[8] ZHAO Jia-Fei, LUO Zhong-Yang, NI Ming-Jiang, CEN Ke-Fa. Dependence of Nanofluid Viscosity on Particle Size and pH Value[J]. Chin. Phys. Lett., 2009, 26(6): 743-745
[9] ZHAO Kun-Yu, ZENG Hua-Rong, LI Guo-Rong, SONG Hong-Zhang, CHENG Li-Hong, HUI Sen-Xing, YIN Qing-Rui. Nanoscale Thermal Response in ZnO Varistors by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2009, 26(10): 743-745
[10] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 743-745
[11] FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2008, 25(1): 743-745
[12] TENG Hong-Hui, ZHAO Wei, JIANG Zong-Lin. A Novel Oblique Detonation Structure and Its Stability[J]. Chin. Phys. Lett., 2007, 24(7): 743-745
[13] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 743-745
[14] RAN Zheng. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation[J]. Chin. Phys. Lett., 2007, 24(12): 743-745
[15] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 743-745
Viewed
Full text


Abstract