Chin. Phys. Lett.  2002, Vol. 19 Issue (2): 147-149    DOI:
Original Articles |
Uniqueness of Inversion Problems Described by the First-Kind Integral Equations
XU Tie-Fen
Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211
Cite this article:   
XU Tie-Fen 2002 Chin. Phys. Lett. 19 147-149
Download: PDF(179KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a general method to prove the uniqueness of the inversion problems described by the first-kind integral equations. The method depends on the analytical properties of the Fourier transform of the integral kernel and the finiteness of the total states (or probability, if normalized), the integration of the“local”density of states, which is a rather moderate condition and satisfied by many inversion problems arising from physics and engineering.
Keywords: 02.30.Rz     
Published: 01 February 2002
PACS:  02.30.Rz (Integral equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I2/0147
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Tie-Fen
Related articles from Frontiers Journals
[1] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 147-149
[2] Gabriela A. Casas**, Paulo C. Rech*** . Numerical Study of a Three-Dimensional Hénon Map[J]. Chin. Phys. Lett., 2011, 28(1): 147-149
[3] MEI Feng-Xiang, SHANG Mei. large Last Multiplier of Generalized Hamilton System[J]. Chin. Phys. Lett., 2008, 25(11): 147-149
Viewed
Full text


Abstract