Chin. Phys. Lett.  2004, Vol. 21 Issue (10): 2057-2058    DOI:
Original Articles |
Geometrical Constraint Equations and Geometrically Permissible Condition for Vesicles
YIN Ya-Jun;YIN Jie
School of Aerospace, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
YIN Ya-Jun, YIN Jie 2004 Chin. Phys. Lett. 21 2057-2058
Download: PDF(188KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The application of a geometrical constraint equation for lipid bilayer vesicles is investigated. First, both the physical meaning and the mathematical formulation for the spontaneous curvature of vesicles are clarified. Second, the geometrically permissible conditions and phase diagrams for vesicles, from which the criteria for the formation, existence and disintegration of vesicles may be determined, are revealed.
Keywords: 87.16.Dg      87.10.+e      03.65.Vf      87.15.La     
Published: 01 October 2004
PACS:  87.16.Dg  
  87.10.+e  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  87.15.La (Mechanical properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I10/02057
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Ya-Jun
YIN Jie
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 2057-2058
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 2057-2058
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 2057-2058
[4] LING Lin, GUO Hong-Lian**, HUANG Lu, QU E, LI Zhao-Lin, LI Zhi-Yuan. The Measurement of Displacement and Optical Force in Multi-Optical Tweezers[J]. Chin. Phys. Lett., 2012, 29(1): 2057-2058
[5] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 2057-2058
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2057-2058
[7] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 2057-2058
[8] ZHANG Yan-Ping, HE Ji-Zhou. Thermodynamic Performance Characteristics of an Irreversible Micro-Brownian Heat Engine Driven by Temperature Difference[J]. Chin. Phys. Lett., 2010, 27(9): 2057-2058
[9] ZHENG Xiao-Hu, DONG Jun, LIU Yu-Wen, YANG Ming, CAO Zhuo-Liang. Unconventional Geometric Quantum Gate in Circuit QED[J]. Chin. Phys. Lett., 2010, 27(7): 2057-2058
[10] JIANG Li-Guo, WU Heng-An, ZHOU Xiao-Zhou, WANG Xiu-Xi. Coarse-Grained Molecular Dynamics Simulation of a Red Blood Cell[J]. Chin. Phys. Lett., 2010, 27(2): 2057-2058
[11] FENG Zhi-Bo, YAN Run-Ying. Robust Quantum Computation with Superconducting Charge Qubits via Coherent Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 2057-2058
[12] JIANG Ming-Ming, YU Si-Xia. Generators for Symmetric Universal Quantum Cloning Machines[J]. Chin. Phys. Lett., 2010, 27(1): 2057-2058
[13] GUO Rong-Wei, U. E. Vincent,. Control of a Unified Chaotic System via Single Variable Feedback[J]. Chin. Phys. Lett., 2009, 26(9): 2057-2058
[14] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 2057-2058
[15] Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofané. Modulated Wave Packets in DNA and Impact of Viscosity[J]. Chin. Phys. Lett., 2009, 26(6): 2057-2058
Viewed
Full text


Abstract