Chin. Phys. Lett.  2003, Vol. 20 Issue (7): 999-1002    DOI:
Original Articles |
Transition to Phase Synchronization Through Generalized Synchronization
GAO Jian1;ZHENG Zhi-Gang1;HE Dai-Hai2;ZHANG Ting-Xian1,3
1Department of Physics, Beijing Normal University, Beijing 100875 2Department of Mathematics and Statistics, McMaster University, Hamilton L8S4K1, Canada 3Department of Physics, Qujing Normal College, Qujing 655000
Cite this article:   
GAO Jian, ZHENG Zhi-Gang, HE Dai-Hai et al  2003 Chin. Phys. Lett. 20 999-1002
Download: PDF(587KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Synchronization in drive-response chaotic systems is studied. For a small mismatch of the natural frequency of the drive and response oscillators, phase synchronization comes before generalized synchronization. For moderate and even large parameter misfits, generalized synchronization can be achieved before phase synchronization. The mechanism of these two different bifurcations is interpreted in terms of the local-minimal-fluctuation method. It is found that the qualitative changes of local-minimal-fluctuations of the response system well manifests the appearance of generalized synchronization.
Keywords: 05.45.-a      87.10.+e     
Published: 01 July 2003
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.10.+e  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I7/0999
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Jian
ZHENG Zhi-Gang
HE Dai-Hai
ZHANG Ting-Xian
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 999-1002
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 999-1002
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 999-1002
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 999-1002
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 999-1002
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 999-1002
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 999-1002
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 999-1002
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 999-1002
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 999-1002
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 999-1002
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 999-1002
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 999-1002
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 999-1002
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 999-1002
Viewed
Full text


Abstract