Chin. Phys. Lett.  2003, Vol. 20 Issue (2): 277-280    DOI:
Original Articles |
Direct Current Hopping Conductivity in One-Dimensional Nanometer Systems
SONG Yi-Pu1,2; XU Hui1;LUO Feng1
1Physics School of Science and Technology, Central South University, Changsha 410083 2Department of Physics, Peking University, Beijing 100871
Cite this article:   
SONG Yi-Pu, XU Hui, LUO Feng 2003 Chin. Phys. Lett. 20 277-280
Download: PDF(330KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A one-dimensional random nanocrystalline chain model is established. A dc electron-phonon-field conductance model of electron tunneling transfer is set up, and a new dc conductance formula in one-dimensional nanometer systems is derived. By calculating the dc conductivity, the relationship among the electric field, temperature and conductivity is analysed, and the effect of the crystalline grain size and the distortion of interfacial atoms on the dc conductance is discussed. The result shows that the nanometer system appears the characteristic of negative differential dependence of resistance and temperature at low temperature. The dc conductivity of nanometer systems varies with the change of electric field and trends to rise as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.
Keywords: 71.23.-k      72.10.-d     
Published: 01 February 2003
PACS:  71.23.-k (Electronic structure of disordered solids)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I2/0277
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Yi-Pu
XU Hui
LUO Feng
Related articles from Frontiers Journals
[1] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 277-280
[2] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 277-280
[3] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 277-280
[4] YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 277-280
[5] NIU Jun, YANG Zhi, CHANG Ben-Kang. Equivalent Method of Solving Quantum Efficiency of Reflection-Mode Exponential Doping GaAs Photocathode[J]. Chin. Phys. Lett., 2009, 26(10): 277-280
[6] LIU Zhao-Sen, Divis Martin, Sechovsky Vladimir. Negative Magnetoresistivity of ErBi and Its Crystal-Field Levels[J]. Chin. Phys. Lett., 2009, 26(1): 277-280
[7] SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 277-280
[8] LI Hai-Hong, LI Dong-Mei, LI Yuan, GAO Kun, LIU De-Sheng, XIE Shi-Jie. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure[J]. Chin. Phys. Lett., 2008, 25(8): 277-280
[9] CHEN Gui-Chu, FAN Guang-Han. Comparison of Gain Properties with Electron--Electron and Electron--LO-Phonon Interactions in Quantum Cascade Structure[J]. Chin. Phys. Lett., 2008, 25(5): 277-280
[10] ZHONG Yan-Ming, XIONG Shi-Jie. Nonadiabatic Geometric Phase and Induced Persistent Current in Mesoscopic Square Circuit with Tilted Magnetic Field at Edges[J]. Chin. Phys. Lett., 2007, 24(9): 277-280
[11] OUYANG Fang-Ping, XU Hui. Design and First-principles Study of a Fullerene Molecular Device[J]. Chin. Phys. Lett., 2007, 24(8): 277-280
[12] ZHANG Jin, CHEN Jing-Zhe, CHEN Qing, REN Shang-Fen, HAN Ru-Shan. Inelastic Electron Transport in Monoatomic Wires[J]. Chin. Phys. Lett., 2007, 24(8): 277-280
[13] LIU Zhao-Sen. Reduced Magneto-Resistivity of a Rare-Earth Crystalline and the Degeneracy Removals of Its Crystal-Field Levels[J]. Chin. Phys. Lett., 2007, 24(7): 277-280
[14] OUYANG Fang-Ping, XU Hui. Electronic Transport in Molecular Junction Based on C20 Cages[J]. Chin. Phys. Lett., 2007, 24(4): 277-280
[15] DING Zong-Ling, XING Huai-Zhong, XU Sheng-Lan, HUANG Yan, CHENXiao-Shuang. First-Principles Study of Electronic Properties in PbS(100) with Vacancy Defect[J]. Chin. Phys. Lett., 2007, 24(11): 277-280
Viewed
Full text


Abstract