Chin. Phys. Lett.  2003, Vol. 20 Issue (3): 321-324    DOI:
Original Articles |
Classical Electromagnetic Field Theory in the Presence of Magnetic Sources
LI Kang1,2;CHEN Wen-Jun2; NAÓN Carlos M.3
1Department of Physics, Hangzhou Teacher’s College, Hangzhou 310036 2Department of Physics, Zhejiang University, Hangzhou 310027 3Instituto de Fisica La Plata, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina
Cite this article:   
LI Kang, CHEN Wen-Jun, NAÓ et al  2003 Chin. Phys. Lett. 20 321-324
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell’s equation and the equation of motion of a dyon moving in the electro-magnetic field.
Keywords: 03.50.De      14.80.Hv      11.10.Ef     
Published: 01 March 2003
PACS:  03.50.De (Classical electromagnetism, Maxwell equations)  
  14.80.Hv (Magnetic monopoles)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I3/0321
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Kang
CHEN Wen-Jun
NAÓ
N Carlos M.
Related articles from Frontiers Journals
[1] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 321-324
[2] YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song . Partially Loaded Cavity Analysis by Using the 2-D FDTD Method[J]. Chin. Phys. Lett., 2011, 28(11): 321-324
[3] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 321-324
[4] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 321-324
[5] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 321-324
[6] ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory[J]. Chin. Phys. Lett., 2009, 26(8): 321-324
[7] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 321-324
[8] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 321-324
[9] WU Hong-Tu, HUANG Chao-Guang, GUO Han-Ying. From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality[J]. Chin. Phys. Lett., 2008, 25(8): 321-324
[10] WANG Zhi-Yong, XIONG Cai-Dong, Keller Ole. The First-Quantized Theory of Photons[J]. Chin. Phys. Lett., 2007, 24(2): 321-324
[11] CHEN Jing-Bo. Multisymplectic Geometry and Its Applications for the Schrodinger Equation in Quantum Mechanics[J]. Chin. Phys. Lett., 2007, 24(2): 321-324
[12] LI Lei, WANG Shun-Jin, ZHOU Shan-Gui, ZHANG Guang-Biao. A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space[J]. Chin. Phys. Lett., 2007, 24(2): 321-324
[13] WANG Shun-Jin, LI Lei, ZHOU Shan-Gui, ZHANG Guang-Biao. On the Physical Contents of the Light-Cone QCD Effective Hamiltonian on Meson Sector[J]. Chin. Phys. Lett., 2006, 23(6): 321-324
[14] ZHANG Yan, SHI Jun-Jie. Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures[J]. Chin. Phys. Lett., 2006, 23(3): 321-324
[15] CHEN Jing-Bo. A Multisymplectic Variational Framework for the Nonlinear Elastic Wave Equation[J]. Chin. Phys. Lett., 2006, 23(2): 321-324
Viewed
Full text


Abstract