Chin. Phys. Lett.  2003, Vol. 20 Issue (3): 317-320    DOI:
Original Articles |
An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations
LIU Yin-Ping;LI Zhi-Bin
Department of Computer Science, East China Normal University, Shanghai 200062
Cite this article:   
LIU Yin-Ping, LI Zhi-Bin 2003 Chin. Phys. Lett. 20 317-320
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on a type of elliptic equation, a new algebraic method to
construct a series of exact solutions for nonlinear evolution equations is proposed, meanwhile, its complete implementation TRWS in Maple is presented. The TRWS can output a series of travelling wave solutions entirely automatically, which include polynomial solutions, exponential function solutions, triangular function solutions, hyperbolic function solutions, rational function solutions, Jacobi elliptic function solutions, and Weierstrass elliptic function solutions. The effectiveness of the package is illustrated by applying it to a variety of equations. Not only are previously known solutions recovered but also new solutions and more general form of solutions are obtained.
Keywords: 03.40.Kf      04.30.Nk      02.90.+p      03.65.Fd     
Published: 01 March 2003
PACS:  03.40.Kf  
  04.30.Nk (Wave propagation and interactions)  
  02.90.+p (Other topics in mathematical methods in physics)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I3/0317
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yin-Ping
LI Zhi-Bin
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 317-320
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 317-320
[3] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 317-320
[4] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 317-320
[5] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 317-320
[6] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 317-320
[7] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 317-320
[8] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 317-320
[9] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 317-320
[10] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 317-320
[11] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 317-320
[12] FAN Hong-Yi, REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel[J]. Chin. Phys. Lett., 2010, 27(5): 317-320
[13] LV Cui-Hong, FAN Hong-Yi,. A New Kind of Integration Transformation in Phase Space Related to Two Mutually Conjugate Entangled-State Representations and Its Uses in Weyl Ordering of Operators[J]. Chin. Phys. Lett., 2010, 27(5): 317-320
[14] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 317-320
[15] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 317-320
Viewed
Full text


Abstract