Chin. Phys. Lett.  2003, Vol. 20 Issue (3): 331-334    DOI:
Original Articles |
Chaos and Fractals in a (2+1)-Dimensional Soliton System
ZHENG Chun-Long1,2,3;ZHANG Jie-Fang3;SHENG Zheng-Mao2
1Department of Physics, Zhejiang Lishui Normal College, Lishui 323000 2Department of Physics, Zhejiang University, Hangzhou 310027 3Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
ZHENG Chun-Long, ZHANG Jie-Fang, SHENG Zheng-Mao 2003 Chin. Phys. Lett. 20 331-334
Download: PDF(729KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering that there are abundant coherent soliton excitations in high dimensions, we reveal a novel phenomenon that the localized excitations possess chaotic and fractal behaviour in some (2+1)-dimensional soliton systems. To clarify the interesting phenomenon, we take the generalized (2+1)-dimensional Nizhnik-Novikov-Vesselov system as a concrete example. A quite general variable separation solutions of this system is derived via a variable separation approach first, then some new excitations like chaos and fractals are derived by introducing some types of lower dimensional chaotic and fractal patterns.
Keywords: 05.45.Yv      03.40.Kf      03.65.Ge     
Published: 01 March 2003
PACS:  05.45.Yv (Solitons)  
  03.40.Kf  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I3/0331
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Chun-Long
ZHANG Jie-Fang
SHENG Zheng-Mao
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[7] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[8] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 331-334
[9] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 331-334
[10] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 331-334
[11] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 331-334
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 331-334
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 331-334
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 331-334
[15] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 331-334
Viewed
Full text


Abstract