Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 370-373    DOI:
Original Articles |
Multisymplectic Geometry and Its Applications for the Schrodinger Equation in Quantum Mechanics
CHEN Jing-Bo
Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029
Cite this article:   
CHEN Jing-Bo 2007 Chin. Phys. Lett. 24 370-373
Download: PDF(202KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Multisymplectic geometry for the Schrödinger equation in quantum mechanics is presented. This formalism of multisymplectic geometry provides a concise and complete introduction to the Schrödinger equation. The Schrödinger equation, its associated energy and momentum evolution equations, and the multisymplectic form are derived directly from the variational principle. Some applications are also explored.
Keywords: 11.10.Ef      03.65.Ca     
Received: 28 August 2006      Published: 24 February 2007
PACS:  11.10.Ef (Lagrangian and Hamiltonian approach)  
  03.65.Ca (Formalism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0370
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jing-Bo
[1] Marsden J E, Patrick G P and Shkoller S 1998 Comm.Math. Phys. 199 351
[2] Chen J B 2002 Lett. Math. Phys. 61 63
[3] Bridges T J 1997 Math. Proc. Cam. Phil. Soc. 121 147
[4] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[5] Chen J B 2005 Lett. Math. Phys. 71 243
[6] Hong J L, Liu Y, Munthe-Kass H and Zanna A 2002 AMultisymplectic Scheme for Schrödinger Equations with VariableCoefficients (preprint)
[7] Olver P J 1993 Applications of Lie Groups toDifferential Equations 2nd edn (New York: Springer)
[8] Veselov A P 1988 Funct. Anal. Appl. 22 83
[9] Chen J B and Qin M Z 2002 Numer. Meth. Part. Diff. Eq. 18 523
[10] Reich S 2000 J. Comput. Phys. 157 473
[11] Lee T D 1982 Phys. Lett. B 122 217
[12] Kane C, Marsden J E and Ortiz M 1999 J. Math. Phys. 40 3353
[13] Chen J B, Guo H Y and Wu K 2003 J. Math. Phys. 441688
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 370-373
[2] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 370-373
[3] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 370-373
[4] FAN Hong-Yi, CHEN Jun-Hua, WANG Tong-Tong. Squeezing-Displacement Dynamics for One-Dimensional Potential Well with Two Mobile Walls where Wavefunctions Vanish[J]. Chin. Phys. Lett., 2010, 27(5): 370-373
[5] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 370-373
[6] Koji Nagata. Bell Operator Method to Classify Local Realistic Theories[J]. Chin. Phys. Lett., 2010, 27(3): 370-373
[7] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 370-373
[8] ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory[J]. Chin. Phys. Lett., 2009, 26(8): 370-373
[9] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 370-373
[10] FAN Hong-Yi, JIANG Nian-Quan. Relation between Characteristic Function of Density Operator and Tomogram[J]. Chin. Phys. Lett., 2009, 26(11): 370-373
[11] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 370-373
[12] WU Hong-Tu, HUANG Chao-Guang, GUO Han-Ying. From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality[J]. Chin. Phys. Lett., 2008, 25(8): 370-373
[13] XU Xue-Fen, ZHU Shi-Qun. Wigner Function of Thermo-Invariant Coherent State[J]. Chin. Phys. Lett., 2008, 25(8): 370-373
[14] WANG Zhi-Yong, XIONG Cai-Dong, Keller Ole. The First-Quantized Theory of Photons[J]. Chin. Phys. Lett., 2007, 24(2): 370-373
[15] LI Lei, WANG Shun-Jin, ZHOU Shan-Gui, ZHANG Guang-Biao. A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space[J]. Chin. Phys. Lett., 2007, 24(2): 370-373
Viewed
Full text


Abstract