Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 411-413    DOI:
Original Articles |
Aggregation Behaviour of Cationic Diblock Copolymer (MTAC)10(BA)16: MesoDyn Simulation Study
CAO Xiao-Rong;TAN Ye-Bang;XU Gui-Ying
Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100
Cite this article:   
CAO Xiao-Rong, TAN Ye-Bang, XU Gui-Ying 2007 Chin. Phys. Lett. 24 411-413
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The aggregation behaviour of an amphiphilic cationic block copolymer (MTAC)10(BA)16 in aqueous solution is investigated by MesoDyn simulation. Simulation results show that (MTAC)10(BA)16 can form spherical, irregular and network aggregates with the increasing volume fraction. The time evolution of order parameter shows that the process of aggregate formation can be divided into diffusion control stage and hydrophobic interaction control stage, while the time evolution of energy indicates that the aggregate formation is driven by enthalpy but not entropy. The order parameter of the hydrophobic blocks BA increases with the increasing (MTAC)10(BA)16 concentration, while the time needed for system balance has the contrary trend.
Keywords: 36.20.-r      82.20.Wt      61.46.+w     
Received: 18 July 2006      Published: 24 February 2007
PACS:  36.20.-r (Macromolecules and polymer molecules)  
  82.20.Wt (Computational modeling; simulation)  
  61.46.+w  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0411
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Xiao-Rong
TAN Ye-Bang
XU Gui-Ying
[1] Kuroda K and DeGrado W F 2005 J. Am. Chem. Soc. 1274128
[2] Ilker M F, Nusslein K, Tew G N and Coughlin E B 2004 J. Am.Chem. Soc. 126 15870
[3] Li Y M, Xu G Y, Chen Y J, Luan Y X and Yuan S L 2006 Comput.Mater. Sci. 36 386
[4] Yuan Y M, Zou X W and Liu H Y 2004 Chin. Phys. Lett. 21709
[5] Li Y M, Xu G Y, Chen A M, Yuan S L and Cao X R 2005 J. Phys.Chem. B 109 22290
[6] Cao X R, Xu G Y, Li Y M and Zhang Z Q 2005 J. Phys. Chem. A 109 10418
[7] Li Y M, Xu G Y, Luan Y X, Yuan S L and Zhang Z Q 2005 Colloid.Surf. A: Physicochem. Eng. Aspects 257-258 385
[8] Malcolm G N and Rowlinson J S 1957 Trans. Faraday Soc. 53 921
[9] Li Y Y, Hou T J, Guo S L, Wang K X and Xu X J 2000 J. Chem.Phys. 2 2749
[10] Valls T and Farrell J E 1993 Phys. Rev. E 47 R36
[11] Kawakatsu T, Kawasaki K, Furusaka M, Okabayashi H and Kanaya T1993 J. Chem. Phys. 99 8200
[12] Maurits N M, van Vlimmeren B A C and Fraaije J G E 1997 Phys.Rev. E 56 816
[13] van Vlimmeren B A C and Fraaije J G E M 1996 Comput. Phys.Commun. 99 21
Related articles from Frontiers Journals
[1] K. Iqbal, A. Basit** . A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice[J]. Chin. Phys. Lett., 2011, 28(4): 411-413
[2] LI Xiao-Xue, DONG Xian-Feng, GAO Kun, XIE Shi-Jie** . Reverse Polarization of a High-Energy Exciton in Conjugated Polymers[J]. Chin. Phys. Lett., 2011, 28(12): 411-413
[3] WANG Yu-Hua**, LI Hui-Qing, LU Jian-Duo, WANG Ru-Wu . Optical Limiting Properties of Ag-Cu Metal Alloy Nanoparticles Analysis by using MATLAB[J]. Chin. Phys. Lett., 2011, 28(11): 411-413
[4] ZHU Guang-Yao, GU Shu-Lin**, ZHU Shun-Ming, TANG Kun, YE Jian-Dong, ZHANG Rong, SHI Yi, ZHENG You-Dou . Simulation and Suppression of the Gas Phase Pre-reaction in Metal-Organic Chemical Vapor Deposition of ZnO[J]. Chin. Phys. Lett., 2011, 28(11): 411-413
[5] LI Li-Juan, ZHAO Ming-Wen, JI Yan-Ju, LI Feng, LIU Xiang-Dong. Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes[J]. Chin. Phys. Lett., 2010, 27(8): 411-413
[6] WANG Xin-Xin, BAO Jing-Dong. A Scheme for Information Erasure in a Double-Well Potential[J]. Chin. Phys. Lett., 2010, 27(2): 411-413
[7] WANG Ai-Jun, CHEN Sheng-Li, DONG Peng, ZHOU Qian, YUAN Gui-Mei, SU Gu-Cong. Self-Assembling of Colloidal Particles Dispersed in Mixture of Ethanol and Water at the Air-Liquid Interface of Colloidal Suspension at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(8): 411-413
[8] TAN Shuai-Xia, LU Xiao-Ying, LI Wen, ZHAO Ning, ZHANG Xiao-Li, XU Jian. A Thermodynamic Analysis of the Validity of Wenzel and Cassie's Equations[J]. Chin. Phys. Lett., 2009, 26(8): 411-413
[9] ZHANG Zhi-Hua, HE Ming, DUAN Xiao-Feng. Optical Properties of Hexagonal and Cubic ZnS Nanoribbons: Experiment and Theory[J]. Chin. Phys. Lett., 2009, 26(6): 411-413
[10] ZHANG Yong-Zhe, WU Li-Hui, LIU Yan-Ping, XIE Er-Qing, YAN De, CHEN Jiang-Tao. Preparation of ZnO Nanospheres and Their Applications in Dye-Sensitized Solar Cells[J]. Chin. Phys. Lett., 2009, 26(3): 411-413
[11] LUO Ming-Yan, SONG Kun, ZHANG Xu, LEE Imshik. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium[J]. Chin. Phys. Lett., 2009, 26(1): 411-413
[12] QIU Xue-Qiong, WU Hui-Xia, TONG Rui, QIAN Shi-Xiong, LIN Yang-Hui, CAI Rui-Fang. Optical Limiting Properties of Two Soluble Polymer/Multi-Walled Carbon Nanotube Composites[J]. Chin. Phys. Lett., 2008, 25(2): 411-413
[13] HUNDUR Yakup, GUVENC Ziya B, HIPPLER Rainer. Dynamical Analysis of Sputtering at Threshold Energy Range: Modelling of Ar+Ni(100) Collision System[J]. Chin. Phys. Lett., 2008, 25(2): 411-413
[14] GAO Chang-Cheng, HUANG Shi-Hua, YOU Fang-Tian, KANG Kai, FENG Ying. Influence of Surface Quenching Effects on Luminescent Dynamics of ZnS:Mn2+ Nanocrystals[J]. Chin. Phys. Lett., 2008, 25(2): 411-413
[15] JIN Ling-Fang, YAN Ming-Lang. Magnetic Properties and Nanostructures of FePtCu:C Thin Films with FePt Underlayers[J]. Chin. Phys. Lett., 2007, 24(9): 411-413
Viewed
Full text


Abstract