Original Articles |
|
|
|
|
Moller Energy Complexes of Monopoles and Textures in General Relativity and Teleparallel Gravity |
Melis Ayg 1,2;Ihsan Yilmaz 1,2 |
1Department of Physics, Art and Science Faculty, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey2Astrophysics Research Center, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey |
|
Cite this article: |
Melis Ayg, Ihsan Yilmaz 2007 Chin. Phys. Lett. 24 874-877 |
|
|
Abstract The energy problem of monopole and texture spacetimes is investigated in the context of two different approaches of gravity such as general relativity and teleparallel gravity. In this connection, firstly the energies for monopoles and textures are evaluated by using the Moller energy--momentum prescription in different approximations. It is obtained that energy distributions of Moller definition give the same results for these topological defects (monopole and texture) in general relativity (GR) and teleparallel gravity (TG). The results strengthen the importance of the Moller energy--momentum definitions in given spacetimes and the viewpoint of Lessner that Moller energy--momentum complex is a powerful concept for energy and momentum.
|
Keywords:
04.20.Cv
04.20.+q
|
|
Received: 29 December 2006
Published: 26 March 2007
|
|
|
|
|
|
[1] Vilenkin A and Shellard E P S 1994 it Cosmic Strings andOther Topological Defecets (Cambridge: Cambridge University Press) [2] Vilenkin A 1985 it Phys. Rep. bf 121 263 [3] Rajaraman R 1987 it Solitons and Instantons (Amsterdam:North-Holland) [4] Nielsen H B and Olesen 1973 it Nucl. Phys. B bf 61 45 [5] Bachas C and Tomaras T N 1994 it Nucl. Phys. B bf 428 209 [6] Bachas C and Tomaras T N 1995 it Phys. Rev. D bf 51 5356 [7] Thooft G 1974 it Nucl. Phys. B bf 79 276 [8] Polyakov A 1974 it JETP Lett. bf 20 194 [9] Kibble T W B 1976 it J. Phys. A bf 9 1387 [10]M\o ller C 1957 it The Theory of Relativity (Oxford: OxfordUniversity Press) [11] Chandrasekhar S and Ferrari V 1991 it Proc. Roy. Soc.London A bf 435 645 [12] Bergqvist G 1992 it Class. Quant. Grav. bf 9 1753 [13] Chen C M and Nester J M 1999 it Class. Quant. Grav. bf16 1279 [14] Trautman A 1962 it Gravitation: An Introduction to CurrentResearch ed Witten L (New York: Wiley) p 169 [15] Landau L D and Lifshitz E M 1987 it The Classical Theory ofFields (Cambridge: Addison-Wesley) [16] Tolman R C 1934 it Relativity, Thermodynamics andCosmology (Oxford: Oxford University Press) p 227 [17] Papapetrou A 1948 it Proc. R. Irish Acad. A bf 11 11 [18] Moller C 1958 it Ann. Phys. bf 4 347 [19] Moller C 1961 it Ann. Phys. (N.Y.) bf 12 118 [20] Weinberg S 1972 it Gravitation and Cosmology (New York: Wiley) [21] Bergmann P G and Thomson R 1953 it Phys. Rev. D bf 89 400 [22] Einstein A 1915 it Math. Phys. (Sitsungsber. Preus. Akad.Wiss.) bf 47 778 [23] Virbhadra K S and Rosen N 1993 it Gen. Rel. Grav. bf 25 429 [24] Virbhadra K S and Chamorro A 1995 it Pramana J. Phys. bf45 181 [25] Lessner G 1996 it Gen. Rel. Grav. bf 28 527 [26] Radinschi I 2001 it Mod. Phys. Lett. A bf 16 673 [27] Halpern P 2006 arXiv:gr-qc/0606095 [28] I C and Radinschi I 2004 it Chin. J. Phys. bf 42 40 [29] Yang I C and Radinschi I 2003 it Chin. J. Phys. bf 41 326 [30] Mikhail F I, Wanas M I, Hindawi A and Lashin E I 1993 itInt. J. Theor. Phys. bf 32 1627 [31] Gad R M 2004 it Astrophys. Space Sci. bf 295 495 [32] Vagenas E C 2003 it Int. J. Mod. Phys. A bf 18 5781 [33] Moller C 1978 it Mat. Fys. Skr. Danske. Vid.Selsk. bf 39 1 [34] Robertson H P 1932 it Ann. Math. (Princeton) bf 33 496 [35] Xu S and Jing J 2006 it Class. Quantum Grav. bf 23 4659 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|