Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1475-1478    DOI:
Original Articles |
Approach to a Cauchy Problem in Stability Study of the Schwarzschild Black Hole
TIAN Gui-Hua 1,2;WANG Shi-Kun;ZHONG Shu-Quan
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
TIAN Gui-Hua, WANG Shi-Kun, ZHONG Shu-Quan 2007 Chin. Phys. Lett. 24 1475-1478
Download: PDF(220KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Generally, the Schwarzschild black hole is proven to be stable by two different methods: the mode-decomposition method and the integral method. We show that the integral method can only apply to the initial data vanishing at both the horizon and the spatial infinity. It can not treat the initial data only vanishing at the spatial infinity. We give an example to show the misleading information caused by the use of tortoise coordinates in the perturbation equations. Subsequently, the perturbation equations in the Schwarzschild coordinates are shown to be insufficient for the stability study.
Keywords: 04.40.Dg      04.07.Bw      97.60.-s     
Received: 02 November 2006      Published: 17 May 2007
PACS:  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  04.07.Bw  
  97.60.-s (Late stages of stellar evolution (including black holes))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01475
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Gui-Hua
WANG Shi-Kun
ZHONG Shu-Quan
[1] Tian G H, Wang Sh K and Zhao Zh 2005 arxiv:gr-qc0504055
[2] Tian G H 2006 Chin. Phys. Lett. 23 783
[3] Tian G H 2005 arxiv: gr-qc0512101
[4] Tian G H, Wang S K and Zhao Z 2006 Chin. Phys. 151430 or arxiv: gr-qc0509030
[5] Vishveshwara C 1970 Phys. Rev. D 1 2870
[6] Chandrasekhar S 1983 The Mathematical Theory of BlackHole (Oxford: Oxford University Press) p 199
[7] Wald R M 1979 J. Math. Phys. 20 1056
[8] Kay B S and Wald R M 1987 Class. Quantum Grav. 4 893
[9] Tian G H, Wang Sh K and Zhong Sh Q 2006 arxiv:gr-qc0603113
[10] He T M and Wang Y J 2005 Chin. Phys. Lett. 22 773
[11] Liu D J and Li X Z 2005 Chin. Phys. Lett. 22 1600
[12] Tian G H, Wang S K and Zhong S Q 2006 arxiv: gr-qc0603040
Related articles from Frontiers Journals
[1] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 1475-1478
[2] WANG Kun,LUO Zhi-Quan**,LI Ying-Lin. Effect of Ultrastrong Magnetic Field on the Electron Capture in the Stellar Surroundings[J]. Chin. Phys. Lett., 2012, 29(4): 1475-1478
[3] WEN De-Hua. Equation of State in the σ-ω-ρ Model Supported by the Observational Data of 4U 1608-52 Neutron Star[J]. Chin. Phys. Lett., 2010, 27(1): 1475-1478
[4] CHEN Xia, WANG Yong-Jiu. The character of an anisotropic and spherically symmetric star in the presence of a cosmological constant[J]. Chin. Phys. Lett., 2009, 26(7): 1475-1478
[5] LUO Xin-Lian, BAI Hua, ZHAO Lei. Double Degenerate Stars[J]. Chin. Phys. Lett., 2008, 25(7): 1475-1478
[6] WEN De-Hua, CHEN Wei, LU Yi-Gang, LIU Liang-Gang. Properties of Neutron Stars Rotating at Kepler Frequency with Uniform Strong Magnetic Field[J]. Chin. Phys. Lett., 2007, 24(3): 1475-1478
[7] Tian Gui-Hua. Rediscussion of the Stability Problem of the Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2006, 23(4): 1475-1478
[8] LIU Dao-Jun, LI Xin-Zhou. Cosmic Microwave Background Radiation Constraints on a Modified Chaplygin Gas Model[J]. Chin. Phys. Lett., 2005, 22(7): 1475-1478
[9] WEN De-Hua, CHEN Wei, LIU Liang-Gang. Rotational Deformation of Neutron Stars[J]. Chin. Phys. Lett., 2005, 22(7): 1475-1478
[10] A. Perez Martinez, H. Perez Rojas, H. J. Mosquera Cuesta. Possible Origin of Magnetic Fields in Very Dense Stars[J]. Chin. Phys. Lett., 2004, 21(11): 1475-1478
Viewed
Full text


Abstract