Original Articles |
|
|
|
|
Growth of Semi-Insulating GaN Using N2 as Nucleation Layer Carrier Gas Combining with an Optimized Annealing Time |
ZHOU Zhong-Tang;XING Zhi-Gang;GUO Li-Wei;CHEN Hong;ZHOU Jun-Ming |
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 |
|
Cite this article: |
ZHOU Zhong-Tang, XING Zhi-Gang, GUO Li-Wei et al 2007 Chin. Phys. Lett. 24 1645-1648 |
|
|
Abstract Semi-insulating (SI) GaN is grown using N2 as the nucleation layer (NL) carrier gas combined with an optimized annealing time by metalorganic chemical vapour deposition. Influence of using H2 and N2 as the NL carrier gas is investigated in our experiment. It is found that the sheet resistance of unintentionally doped GaN can be increased from 104Ω/sq to 1010Ω/sq by changing the NL carrier gas from H2 to N2 while keeping the other growth parameters to be constant, however crystal quality and roughness of the film are degraded unambiguously. This situation can be improved by optimizing the NL annealing time. The high resistance of GaN grown on NL using N2 as the carrier gas is due to higher density of threading dislocations caused by the higher density of nucleation islands and small statistic diameter grain compared to the one using H2 as carrier gas. Annealing the NL for an optimized annealing time can decrease the density of threading dislocation and improve the film roughness and interface of AlGaN/GaN without degrading the sheet resistance of as-grown GaN significantly. High-quality SI GaN is grown after optimizing the annealing time, and AlGaN/GaN high electron mobility transistors are also prepared.
|
Keywords:
61.10.-i
16.10.Kw
81.10.-h
|
|
Received: 28 November 2006
Published: 17 May 2007
|
|
PACS: |
61.10.-i
|
|
|
16.10.Kw
|
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
|
|
|
[1] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M,Scha W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W andHilsenbeck J 1999 J. Appl. Phys. 85 3222 [2] Wetzel C, Suski T, Ager J W, Weber E R, Haller E E, Fisher S, MeyerB K, Molnar R J and Perlin P 1997 Phys. Rev. Lett. 78 3923 [3] Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377 [4] Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl.Phys. Lett. 81 439 [5] Polyakov A Y, Smirnov N B, Govorkov A V and Pearton S J 2004 J. Vac. Sci. Technol. B 22 120 [6] Bougrioua Z, Moerman I, Nistor L, Van Daele B, Monroy E, PalaciosT, Calle F and Leroux M 2003 Phys. Status Solidi A 195 93 [7] Bougriouaa Z, Moermana I, Sharma N, Wallis R H, Cheyns J, Jacobs K,Thrush E J, Considine L, Beanland R, Farvacque J L and Humphreys C 2001 J. Cryst. Growt. 230 573 [8] Look D C, Reynolds D C, Jones R L, Kim W, Aktas O, Botchkarev A,Salvador A and Morkoc H 1997 Mater. Sci. Eng. B 44 423 [9] Lee J, Lee M, Hahm S, Lee Y, Lee J, Bae Y and Cho H 2003 MRSInt. J. Nitride Semicond. Res. 8 5 [10] Wickenden A E, Koleske D D, Henry R L, Twigg M E and Fatemi M 2004 J. Cryst. Growth 260 54 [11] Nakamura S 1991 Jpn. J. Appl. Phys. 30 L1705 [12] Bottcher T, Einfeldt S, Figge S, Chierchia R, Heinke H, Hommel Dand Speck J S 2001 Appl. Phys. Lett. 78 1976 [13] Cho H K, Kim K S, Hong C H and Lee H J 2001 J. Cryst. Growth 223 38 [14] Brazel E G, Chin M A and Narayanamurti V 1999 Appl. Phys.Lett. 74 2367 [15] Simpkins B S, Yu E T, Waltereit P and Speck J S 2003 J. Appl.Phys. 94 1448 [16] Weimann N G, Eastman L F, Doppalapudi D, Ng H M, Moustakas T D1998 J. Appl. Phys. 83 3656 [17] Grezegorczyk A P, Macht L, Hageman P R, Weyher J L, Larsen P K2005 J. Cryst. Growth 273 424 [18] Wu X H, Fini P, Tarsa E J, Heying B, Keller S, Mishra U K,DenBaars S P and Speck J S 1998 J. Cryst. Growth 189 231 [19] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaarsS P and Speck J S 1996 Appl. Phys. Lett. 68 643 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|