Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1637-1640    DOI:
Original Articles |
Power Consideration for Pulsed Discharges in Potassium Seeded Argon
XIA Sheng-Guo;HE Jun-Jia;LIU Ke-Fu
Pulse Magnetic Field Laboratory, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
XIA Sheng-Guo, HE Jun-Jia, LIU Ke-Fu 2007 Chin. Phys. Lett. 24 1637-1640
Download: PDF(296KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest
that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved ffectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1Td=1×10-21Vm2) of E/N is enough to sustain an electron density of
1019m-3 in 1 atm 1500K Ar+0.1% K mixture, with a very small power input of about
0.08×104W/m3.

Keywords: 52.80.-s      52.50.Dg      52.25.Jm     
Received: 09 October 2006      Published: 17 May 2007
PACS:  52.80.-s (Electric discharges)  
  52.50.Dg (Plasma sources)  
  52.25.Jm (Ionization of plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01637
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Sheng-Guo
HE Jun-Jia
LIU Ke-Fu
[1] Macheret S O, Shneider M N and Miles R B 2002 IEEE Trans.Plasma Sci. 30 1301
[2] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
[3] BOLSIG+ 2005 CPAT:http://www.codiciel.fr/plateforme/ plasma/bolsig/bolsig.php
[4] Phelps A V ftp://jila.colorado.edu/collision data/
[5] Moores D L 1976 J. Phys. B: Atom. Mol. Phys. 9 1329
[6] Msezane A Z, Awuah P and Hiamang S 1992 Phys. Rev. A 46 6949
[7] Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, MurrayM J and Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285
[8] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
[9] McCaughey M J and Kushner M J 1991 J. Appl. Phys. 69 6952
[10] Mittal M L and Gowda G P 1986 J. Appl. Phys. 59 1042
Related articles from Frontiers Journals
[1] A. M. A. Amry*,V. J. Law,I. W. Boyd. Optical Emission Analysis of Molecular Nitrogen by Using a Self-Resonating Dielectric Barrier Plasma Reactor[J]. Chin. Phys. Lett., 2012, 29(5): 1637-1640
[2] LIU Feng, WANG Wei-Wei, CHANG Xi-Jiang, LIANG Rong-Qing** . Preliminary Investigation of a Dielectric Barrier Discharge Lamp in Open Air at Atmospheric Pressure[J]. Chin. Phys. Lett., 2011, 28(8): 1637-1640
[3] WU Tao, WANG Xin-Bing** . Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass[J]. Chin. Phys. Lett., 2011, 28(5): 1637-1640
[4] A. A. Azooz*, S. K. Talal . Electric Discharge in Pin-Plate Audio Frequency Plasma[J]. Chin. Phys. Lett., 2011, 28(11): 1637-1640
[5] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 1637-1640
[6] NI Guo-Hua, MENG Yue-Dong, CHENG Cheng, LAN Yan. Characteristics of a Novel Water Plasma Torch[J]. Chin. Phys. Lett., 2010, 27(5): 1637-1640
[7] GAO Wei, SUN Bin, DING Zhen-Feng. Attachment Instabilities of SF6 Inductively Coupled Plasmas under Different Coupling Intensities[J]. Chin. Phys. Lett., 2009, 26(6): 1637-1640
[8] YANG Qian-Suo, LIU Chun, PENG Zhi-Min, ZHU Nai-Yi. Laser-Induced Particle Jet and Its Ignition Application in Premixed Combustible Gases[J]. Chin. Phys. Lett., 2009, 26(6): 1637-1640
[9] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 1637-1640
[10] LAN Chao-Hui, HU Xi-Wei, JIANG Zhong-He, LIU Ming-Hai. Effect of Air Gap on Uniformity of Large-Scale Surface-Wave Plasma[J]. Chin. Phys. Lett., 2009, 26(11): 1637-1640
[11] LI Lin-Sen, XU Xu, LIU Feng, ZHOU Qian-Hong, NIE Zong-Fu, LIANG Yi-Zi, LIANG Rong-Qing. Improvement of Uniformity of Inductively Coupled Plasma with a one Spiral Antenna[J]. Chin. Phys. Lett., 2008, 25(6): 1637-1640
[12] LIANG Yi-Zi, OU Qiong-Rong, LIANG Bo, LIANG Rong-Qing. Large Volume and High Density Surface Wave Plasmas Sustained by Two Microwave Launchers[J]. Chin. Phys. Lett., 2008, 25(5): 1637-1640
[13] SUN Yun-Jin, FU Ya-Bo, CHEN Qiang, ZHANG Chun-Mei, SANG Li-Jun, ZHANG Yue-Fei. Silicon Dioxide Coating Deposited by PDPs on PET Films and Influence on Oxygen Transmission Rate[J]. Chin. Phys. Lett., 2008, 25(5): 1637-1640
[14] M. K. Mishra, A. Phukan. Effect of Discharge Voltage on an Ion Sheath Formed at a Grid in a Multi-Dipole Discharge Plasma[J]. Chin. Phys. Lett., 2008, 25(3): 1637-1640
[15] LIU Liang, ZHANG Gui-Xin, FENG Jian, WANG Xin-Xin, LUO Cheng-Mu. A Microwave Air Plasma Source under Atmospheric Pressure[J]. Chin. Phys. Lett., 2008, 25(3): 1637-1640
Viewed
Full text


Abstract