Original Articles |
|
|
|
|
Effects of Dislocation on High Temperature Transport Characteristics of Unintentionally Doped GaN |
WANG Mao-Jun;SHEN Bo;XU Fu-Jun;WANG Yan;XU Jian;HUANG Sen;YANG Zhi-Jian;QIN Zhi-Xin;ZHANG Guo-Yi |
State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 |
|
Cite this article: |
WANG Mao-Jun, SHEN Bo, XU Fu-Jun et al 2007 Chin. Phys. Lett. 24 1682-1685 |
|
|
Abstract High temperature transport characteristics of unintentionally doped GaN have been investigated by means of high temperature Hall measurements from room temperature to 500°C. The increment of electron concentration from room temperature to 500°C is found to vary largely for different samples. The dispersion of temperature dependence of electron concentration is found to be directly proportional to the density of dislocations in GaN layers calculated by fitting the FWHM of the rocking curves in x-ray diffraction measurements (XRD). The buildup levels in persistent photoconductivity (PPC) are also shown to be directly proportional to the density of dislocations. The correlation of XRD, Hall and PPC results indicate that the high temperature dependence of electron density in unintentional doped GaN is directly dislocation related.
|
Keywords:
71.20.Nr
73.50.-h
73.61.Ey
|
|
Received: 12 January 2007
Published: 17 May 2007
|
|
PACS: |
71.20.Nr
|
(Semiconductor compounds)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
|
|
|
[1] Eastman L F, Tilak V, Smart J, Green B M, Chumbes E M., Dimitrov R,Kim H, Ambacher O S, Weimann N, Prunty T, Murphy M, Schaff W J andShealy J R 2001 IEEE Trans. Electron. Devices 48 479 [2] Wu Y-F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and KapolnekD 2001 IEEE Trans. Electron. Devices 48 586 [3] Egawa T, Zhao G Y, Ishikawa H, Umeno M and Jimbo T 2001 IEEE Trans. Electron. Devices 48 603 [4] Qhalid Fareed R S, Hu X, Tarakji A, Deng J, Gaska R, Shur M andKhan M A 2005 Appl. Phys. Lett. 86 143512 [5] Maeda N, Tsubaki K, Saitoh T and Kobayashi N 2001 Appl.Phys. Lett. 79 1634 [6] Zhang M, Xiao H D and Lin Z J 2006 Chin. Phys. Lett.23 1900 [7] Maruska H P and Tietjin J J 1969 Appl. Phys. Lett. 15 327 [8] Ilengems M and Montgomery H C 1973 J. Phys. Chen. Solids34 885 [9] Neugebauer J and van de Walle C G 1994 Phys. Rev. B 50 8067 [10] Neugebauer J and van de Walle C G 1995 Phys. Rev. Lett.75 4452 [11] Neugebauer J and van de Walle C G 1996 Appl. Phys.Lett. 69 503 [12] di Forte-Poisson M A, Huet F, Romann A, Tordjman M, Lancefield D,Pereira E, Di Persio J and Pecz B 1998 J. Cryst. Growth 195 314 [13] Fang Z Q, Look D C and Polenta L 2002 J. Phys.: Condens.Matter 14 13061 [14] Lee S M, Belkhir M A, Zhu X Y and Lee Y H 2000 Phys. Rev. B 61 16033 [15] Srikant V, Speck J S and Clarke D R 1997 J. Appl. Phys.82 4286 [16] Chierchia R, Bottcher T, Heinke H, Einfeldt S, Figge S and HommelD 2003 J. Appl. Phys. 93 8918 [17] Fini P, Wu X, Tarsa E J, Golan Y, Srikant V, Keller S, Denbaars SP and Speck J S 1998 Jpn. J. Appl. Phys. 37 4460 [18] Qian W, Skowronski M, Graef M De, Doverspike K, Rowland L B andGaskill D K 1994 Appl. Phys. Lett. 66 1252 [19] Wickenden A E, Koleske D D, Henry R L, Twigg M E and Fatemi M 2004J. Cryst. Growth 260 54 [20] Hubbard S M, Zhao G, Pavlidis D, Sutton W and Cho E 2005 J. Cryst. Growth 284 297 [21] Hawkridge M E and Cherns D 2005 Appl. Phys. Lett. 87 221903 [22] Oila J, Kivioja J, Ranki V, Saarinen K, Look D C, Molnar R J, ParkS S, Lee S K and Han J Y 2003 Appl. Phys. Lett. 82 3433 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|