Original Articles |
|
|
|
|
Growth and Characterization of AlGaN/AlN/GaN HEMT Structures with a Compositionally Step-Graded AlGaN Barrier Layer |
MA Zhi-Yong;WANG Xiao-Liang;HU Guo-Xin;RAN Jun-Xue;XIAO Hong-Ling;LUO Wei-Jun; TANG Jian;LI Jian-Ping;LI Jin-Min |
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 |
|
Cite this article: |
MA Zhi-Yong, WANG Xiao-Liang, HU Guo-Xin et al 2007 Chin. Phys. Lett. 24 1705-1708 |
|
|
Abstract A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806cm2/Vs at room temperature and low rms surface roughness of 0.220nm for a scan area of 5μm×5μm are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5Ω/square, with a good resistance uniformity of 0.68%, is also obtained across the 50mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218mS/mm and a maximum drain current density of 800mA/mm.
|
Keywords:
73.40.Kp
81.15.Gh
84.30.Jc
|
|
Received: 08 February 2007
Published: 17 May 2007
|
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
|
|
|
[1] Asif Khan M, Bhattarai A, Kuznia J N and Olson D T 1993 Appl.Phys. Lett. 63 1214 [2] Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, ShibataT, Tanaka M and Oda O 2004 Appl. Phys. Lett. 85 1710 [3] Wang X L, Wang C M, Hu G X, Wang J X and Li J P 2006 Phys.Status Solidi C 3 607 [4] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M,Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron. DeviceLett. 25 117 [5] Wang X L, Hu G X, Ma Z Y, Ran J X, Wang C M, Xiao H L, Tang J andLi J P 2007 J. Crystal Growth 298 835 [6] Miyoshi M, Arulkumaran S, Ishikawa H, Egawa T, Tanaka M and Oda O2004 Jpn. J. Appl. Phys. 43 7939 [7] Wang C M, Wang X L, Hu G X, Wang J X, Li J P and Wang Z G 2006 Appl. Surf. Sci. 253 762 [8] Bougrioua Z, Moerman I, Nistor L, Van Daele B, Monroy E, PalaciosT, Calle F and Leroux M 2003 Phys. Status Solidi A 195 93 [9] Wang C M, Wang X L, Hu G X, Wang J X and Li J P 2006 Phys.Status Solidi C 3 486 [10] Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2003 J. Vac.Sci. Technol. B 21 888 [11] Miyoshi M, Egawa T and Ishikawa H 2005 J. Vac. Sci.Technol. B 23 1527 [12] Keller S, Parish G, Fini P T, Heikman S, Chen C H, ZhangN, DenBaars S P, Mishra U K and Wu Y F 1999 J. Appl. Phys. 86 5850 [13] Takeuchi T, Takeuchi H, Sota S, Sakai H, Amano H and Akasaki I1997 Jpn. J. Appl. Phys. II 36 L177 [14] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K,Murphy M, Schaff W J and Eastman L F 1999 J. Appl.Phys. 85 3222 [15] Wang X L,Wang C M, Hu G X, Wang J X, Chen T S, Jiao G, Li J P,Zeng Y P and Li J M 2005 Solid-State Electron. 49 1387 [16] Wang X L, Hu G X, Ma Z Y, Xiao H L, Wang C M, Luo W J and Liu X Y2006 Chin. J. Semiconduct. 27 1521 [17] Hsu L and Walukiewicz W 2001 J. Appl. Phys. 89 1783 [18] Zhang Y F and Singh J 1999 J. Appl. Phys. 85 587 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|