Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1728-1730    DOI:
Original Articles |
An Easily Operating Polymer 1×4 Optical Waveguide Switch Matrix Based on Vertical Couplers
Kaixin Chen1;Pak L Chu2;Hau Ping Chan1;Kin S. Chiang1
1Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong2Cotco Holdings Ltd, Science Park, Hong Kong
Cite this article:   
Kaixin Chen, Pak L Chu, Hau Ping Chan et al  2007 Chin. Phys. Lett. 24 1728-1730
Download: PDF(279KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A three-dimensional (3D) polymer thermo-optic (TO) 1×4 waveguide switch
matrix based on vertical couplers is demonstrated. It consists of four basic 3D switch units and because of its 3D structure, its construction is compact, only 9mm in length; moreover, the control logic of the entire switch is very simple, the light signal can be easily switched to any output port by operating only a single switch unit. The finished devices exhibit a switching extinction ratio greater than 21dB for all of four output ports and the crosstalk between two
adjacent output ports is lower than -19dB. The rise time and the fall time of the switch matrix are 0.8ms and 1.4ms, respectively. The required electrical power to initiate the switching function for all switching units is about 50mW.
Keywords: 78.20.Nv      42.82.Et      42.82.Ds     
Received: 24 October 2006      Published: 17 May 2007
PACS:  78.20.Nv  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.Ds (Interconnects, including holographic interconnects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01728
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kaixin Chen
Pak L Chu
Hau Ping Chan
Kin S. Chiang
[1] Meinrad S and Gundolf W et al 1996 J. Lightwave Technol. 14 822
[2] Takashi G and Mitsuho Y et al 1998 IEEE Photon. Technol.Lett. 10 810
[3] Chen Y Y and Li Y P et al 2006 Chin. Phys. Lett. 23 1823
[4] Garner S M and Dalton L R et al 1999 IEEE Photon.Technol. Lett. 11 842
[5] Chen K X and Chu P L et al 2005 Opt. Commun. 250297
[6] Chen K X, Chu P L and Chan H P 2005 Opt. Commun. 244153
[7] Kim K H and Kwon M S et al 2004 IEEE Photon. Technol.Lett. 16 783
[8] Chen K X and Chu P L et al 2006 J. Lightwave Technol. 24 904
[9] Matsumura K and Tomabechi Y 1986 IEEE J. Quantum Electron. 22 959
Related articles from Frontiers Journals
[1] LIU Wei-Hua, ZHAO Yan-Li, XU Cheng-Zhi, ZHAO Jian-Yi, LIU Wen, XU Yuan-Zhong. Optical 90° Hybrid Based on an InP 4×4 Multimode Interference Coupler for Coherent Receiver Application[J]. Chin. Phys. Lett., 2012, 29(6): 1728-1730
[2] ZHU Yun-Jin, HUANG Xu-Guang, MEI Xian. A Surface Plasmon Polariton Electro-Optic Switch Based on a Metal-Insulator-Metal Structure with a Strip Waveguide and Two Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(6): 1728-1730
[3] GUO Wei-Feng,ZHAO Yong,WANG Wan-Jun,SHAO Hai-Feng,YANG Jian-Yi,JIANG Xiao-Qing**. Design and Fabrication of a Monolithic Optoelectronic Integrated Circuit Chip Based on CMOS Compatible Technology[J]. Chin. Phys. Lett., 2012, 29(4): 1728-1730
[4] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 1728-1730
[5] ZHOU Jing-Tao**, SHEN Hua-Jun, YANG Cheng-Yue, LIU Huan-Ming, TANG Yi-Dan, LIU Xin-Yu . Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires[J]. Chin. Phys. Lett., 2011, 28(8): 1728-1730
[6] ZHAO Yong, XU Chao, WANG Wan-Jun, ZHOU Qiang, HAO Yin-Lei, YANG Jian-Yi, WANG Ming-Hua, JIANG Xiao-Qing** . Photocurrent Effect in Reverse-Biased p-n Silicon Waveguides in Communication Bands[J]. Chin. Phys. Lett., 2011, 28(7): 1728-1730
[7] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 1728-1730
[8] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure[J]. Chin. Phys. Lett., 2011, 28(5): 1728-1730
[9] XIAO Xi, ZHU Yu, XU Hai-Hua, ZHOU Liang, HU Ying-Tao, LI Zhi-Yong, LI Yun-Tao, YU Yu-De, YU Jin-Zhong. Wafer-Level Testable High-Speed Silicon Microring Modulator Integrated with Grating Couplers[J]. Chin. Phys. Lett., 2010, 27(9): 1728-1730
[10] HE Ling-Juan, XU Xu-Ming, LIU Nian-Hua, YU Tian-Bao, FANG Li-Guang, LIAO Qing-Hua. Proposal of an Ultracompact Triplexer Using Photonic Crystal Waveguide with an Air Holes Array[J]. Chin. Phys. Lett., 2010, 27(8): 1728-1730
[11] ZHOU Chang-Zhu, LIU Ya-Zhao, LI Zhi-Yuan. Waveguide Bend of 900 in Two-Dimensional Triangular Lattice Silicon Photonic Crystal Slabs[J]. Chin. Phys. Lett., 2010, 27(8): 1728-1730
[12] JI Lian, ZHANG Shu-Ming, JIANG De-Sheng, LIU Zong-Shun, ZHANG Li-Qun, ZHU Jian-Jun, ZHAO De-Gang, DUAN Li-Hong, YANG Hui,. Fabrication and Characterization of High Power InGaN Blue-Violet Lasers with an Array Structure[J]. Chin. Phys. Lett., 2010, 27(5): 1728-1730
[13] WANG Wei, HUANG Bei-Ju, DONG Zan, LIU Hai-Jun, ZHANG Xu, GUAN Ning, CHEN Jin, GUO Wei-Lian, NIU Ping-Juan, CHEN Hong-Da. A Low-Voltage Silicon Light Emitting Device in Standard Salicide CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(4): 1728-1730
[14] LÜ, Shu-Yuan, ZHAO Jian-Lin, ZHANG Dong. Improved Microfluidic Coupled-Cavity Waveguides for Slow Light Transmission[J]. Chin. Phys. Lett., 2010, 27(3): 1728-1730
[15] CHENG Jie-Rong, ZHANG Wei, ZHOU Qiang, FENG Xue, HUANG Yi-Dong, PENG Jiang-De . Correlated Photon Pair Generation in Silicon Wire Waveguides at 1.5 μm[J]. Chin. Phys. Lett., 2010, 27(12): 1728-1730
Viewed
Full text


Abstract