Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1749-1752    DOI:
Original Articles |
Effect of Carbon Source with Different Graphitization Degrees on the Synthesis of Diamond
LIU Wan-Qiang1;MA Hong-An1;LI Xiao-Lei 1,2;LIANG Zhong-Zhu1;LIU
Mi-Lan3;LI Rui1;JIA Xiao-Peng 1,2
1National Lab of Superhard Materials, Jilin University, Changchun 1300122Henan Polytechnic University, Jiaozuo 4540003Testing center, Jilin University, Changchun 130012
Cite this article:   
LIU Wan-Qiang, MA Hong-An, LI Xiao-Lei et al  2007 Chin. Phys. Lett. 24 1749-1752
Download: PDF(493KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using three kinds of graphites with different graphitization degrees as carbon source and Fe--Ni alloy powder as catalyst, the synthesis of diamond crystals is performed in a cubic anvil high-pressure and high-temperature apparatus (SPD-6×1200). Diamond crystals with perfect hexoctahedron shape are successfully synthesized at pressure from 5.0 to 5.5GPa and at temperature from 1570 to 1770K. The synthetic conditions, nucleation, morphology, inclusion and granularity of diamond crystals are studied. The temperature and pressure increase with the increase of the graphitization degree of graphite. The quantity of nucleation and granularity of diamonds decreases with the increase of graphitization degree of graphite under the same synthesis conditions. Moreover, according to the results of the Mossbauer
spectrum, the composition of inclusions is mainly Fe3C and Fe-Ni alloy phases in diamond crystals synthesized with three kinds of graphites.
Keywords: 81.05.Uw      81.10.Aj      81.10.-h     
Received: 13 December 2006      Published: 17 May 2007
PACS:  81.05.Uw  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01749
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Wan-Qiang
MA Hong-An
LI Xiao-Lei
LIANG Zhong-Zhu
LIUMi-Lan
LI Rui
JIA Xiao-Peng
[1] Bundy F P, Hall H T, Strong H M and Wentorf R W 1955 Nature 176 51
[2] Bovenkerk H B, Bundy F P, Hall H T, Strong H M and Wentorf R W1959 Nature 184 1094
[3] L Gou, S Hong and Q Gou 1994 Advances in New Diamond Science andTechnology (Tokyo: Ohm) chap 8 p 513
[4] Ganevic L G, Nagopmyj V G and Sipkov N N 1997 Synth. Diamonds 3 6
[5] Tsuzuki A, Hirano S I and Naka S 1984 J. Mater. Sci. 191153
[6] Kasatochkin V I, Shcerenberg L E, Siesarev V N and Dokl Yu N 1974 Akad. Nauk 194 801
[7] Tsuzuki A, Hirano S J and Naka S 1985 J. Mater. Sci. 202260
[8] Skury A L D, Bobrovnitchii G S and Monteiro S N 2004 Diamond Relat. Mater. 13 1725
[9] Choi J Y, Eun K Y, Kim J S and Kang S J L 1998 Diamond Relat.Mater. 7 1196
[10] Wakatsuki M 1966 Jpn. J. Appl. Phys. 5 337
Related articles from Frontiers Journals
[1] YANG Gong-Xian, GONG Xiu-Fang. Laser-Induced Distortions and Disturbance Propagation of Delocalized Electronic States in Monatomic Carbon Chains[J]. Chin. Phys. Lett., 2012, 29(6): 1749-1752
[2] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 1749-1752
[3] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 1749-1752
[4] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 1749-1752
[5] BAO Li-Hong, ZHANG Jiu-Xing**, ZHOU Shen-Lin, ZHANG Ning, XU Hong . Floating Zone Growth and Thermionic Emission Property of Single Crystal CeB6[J]. Chin. Phys. Lett., 2011, 28(8): 1749-1752
[6] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 1749-1752
[7] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 1749-1752
[8] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 1749-1752
[9] FU Di, XIE Dan, ZHANG Chen-Hui, ZHANG Di, NIU Jie-Bin, QIAN He, LIU Li-Tian,. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications[J]. Chin. Phys. Lett., 2010, 27(9): 1749-1752
[10] LEI Tong, WANG Xiao-Ping, WANG Li-Jun, LV Cheng-Rui, ZHANG Shi, ZHU Yu-Zhuan. Electroluminescence from Multilayered Diamond/CeF3/SiO2 Films[J]. Chin. Phys. Lett., 2010, 27(4): 1749-1752
[11] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 1749-1752
[12] FU Xin, JIANG Jun, LIU Chao, YU Zhi-Yang, Steffan LEA, YUAN Jun,. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires[J]. Chin. Phys. Lett., 2009, 26(8): 1749-1752
[13] XIONG Juan, GU Hao-Shuang, HU Kuan, HU Ming-Zhe. Fabrication and Frequency Response Characteristics of AlN-Based Solidly Mounted Resonator[J]. Chin. Phys. Lett., 2009, 26(4): 1749-1752
[14] ZHOU Sheng-Guo, ZANG Chuan-Yi, MA Hong-An, HU Qiang, LI Xiao-Lei, LI Shang-Sheng, ZHANG He-Min, JIA Xiao-Peng,. HPHT Synthesis of Different Shape Coarse-Grain Diamond Single Crystals[J]. Chin. Phys. Lett., 2009, 26(4): 1749-1752
[15] LIANG Zhong-Zhu, LIANG Jing-Qiu, JIA Xiao-Peng. Effects of NaN3 Added in Fe-C System on Inclusion and Impurity of Diamond Synthesized at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(3): 1749-1752
Viewed
Full text


Abstract