Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1771-1774    DOI:
Original Articles |
Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation
YAN Shi-Wei 1,2,3;WANG Qi1;XIE Bai-Song 1,3;ZHANG Feng-Shou 1,2,3
1The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University,Beijing 1008752Center of Theoretical Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 7300003Beijing Radiation Center, Beijing 100875
Cite this article:   
YAN Shi-Wei, WANG Qi, XIE Bai-Song et al  2007 Chin. Phys. Lett. 24 1771-1774
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Exploiting the nonlinear dynamics in the negative feedback loop, we propose a statistical signal-response model to describe the different oscillatory behaviour in a biological network motif. By choosing the delay as a bifurcation parameter, we discuss the existence of Hopf bifurcation and the stability of the periodic solutions of model equations with the centre manifold theorem and the normal form theory. It is shown that a periodic solution is born in a Hopf bifurcation beyond a critical time delay, and thus the bifurcation phenomenon may be important to elucidate the mechanism of oscillatory activities in regulatory biological networks.

Keywords: 87.16.Yc      05.45.-a      87.14.Ee      02.30.Ks     
Received: 22 March 2007      Published: 17 May 2007
PACS:  87.16.Yc (Regulatory genetic and chemical networks)  
  05.45.-a (Nonlinear dynamics and chaos)  
  87.14.Ee  
  02.30.Ks (Delay and functional equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01771
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Shi-Wei
WANG Qi
XIE Bai-Song
ZHANG Feng-Shou
[1] Hofseth L J, Hussain S P and Harris C C 2004 TrendsPharmacol Sci. 25 177 and references therein
[2] Bray D 1995 Nature 376 307
[3] Ferrell J E Jr and Xiong W 2001 Chaos 11 227
[4] Lahav G et al 2004 Nat. Genet. 36 147
[5] Geva-Zatorsky N et al 2006 Mol. Syst. Biol. doi:10.1038/msb4100068
[6] Lev Bar-Or R et al 2000 Proc. Natl. Acad. Sci. USA 9711250
[7] Tyson J J 2004 Nat. Genet. 36 113 Tyson J J 2006 Mol. Syst. Biol. doi: 10.1038/msb4100060
[8] Monk N A M 2003 Curr. Biol. 13 1409
[9] Tiana G, Jensen M H and Sneppen K 2002 Eur. Phys. J. B 29 135
[10] Mihalas G I et al 2000 J. Biol. Sys. 8 21
[11] Haupt Y et al 1997 Nature 387 296
[12] Kubbutat M H G, Jones S N and Vousden K H 1997 Nature 387 299
[13] Reid G et al 2003 Mol. Cell 11 605
[14] Goldbeter A 2002 Nature 420 238
[15] Nagoshi E et al 2004 Cell 119 693
[16] Lan Ma et al 2006 Proc. Natl. Acad. Sci. USA 10214266
[17] Yan S W and Zhuo Y Z 2006 Physica D 220 157
[18] Zhang L J, Yan S W and Zhuo Y Z 2007 Acta Phys. Sin. 56 2442
[19] Yan S W J. Biol. Syst. accepted and in processing
[20] Yan S W, Wang R and Zhuo Y Z 2006 Sci. Res. Mon. 2 (12) 2
[21] Hassard B D, Kazarinoff N D and Wan Y H 1981 Theory andApplications of Hopf Bifurcation (Cambridge: Cambridge University Press)
[22] Unger T et al 1999 EMBO J. 18 1805
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1771-1774
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1771-1774
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1771-1774
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1771-1774
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1771-1774
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1771-1774
[7] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 1771-1774
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1771-1774
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1771-1774
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1771-1774
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1771-1774
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1771-1774
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1771-1774
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1771-1774
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1771-1774
Viewed
Full text


Abstract