Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 2040-2043    DOI:
Original Articles |
Critical Exponents for the Re-entrant Phase Transitions in the Three-Dimensional Blume--Emery--Griffiths Model on the Cellular Automaton
N. Seferoglu1;B. Kutlu2
1GaziUniversitesi, Fen Bilimleri Enstitusu, Fizik Anabilim Dal\i, Ankara, Turkey 2GaziUniversitesi, Fen-Edebiyat Fakultesi, Fizik Bolumu, 06500 Teknikokullar, Ankara, Turkey
Cite this article:   
N. Seferoglu, B. Kutlu 2007 Chin. Phys. Lett. 24 2040-2043
Download: PDF(273KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The critical behaviour of the three-dimensional Blume--Emery--Griffiths (BEG)
model is investigated at D/J=0, -0.25 and -1 in the range of -1≤K/J≤0 for J=100. The simulations are carried out on a simple cubic lattice using the heating algorithm improved from the Creutz cellular automaton (CCA) under periodic boundary conditions. The universality of the model are obtained for re-entrant and double re-entrant phase transitions which occur at certain D/J and K/J parameters, with J and K representing the nearest-neighbour bilinear and biquadratic interactions, and D being the single-ion anisotropy parameter. The values of static critical exponents β, γ and υ are estimated within the framework of the finite-size scaling theory. The results are compatible with the universal Ising critical behaviour for all continuous phase transitions in these ranges.
Keywords: 64.60.Cn      64.60.Fr     
Received: 15 February 2007      Published: 25 June 2007
PACS:  64.60.Cn (Order-disorder transformations)  
  64.60.Fr  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/02040
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
N. Seferoglu
B. Kutlu
[1] Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 4 1071
[2] Lajzerowicz J and Sivardiere J 1975 Phys. Rev. A 11 2079
[3] Barker J A and Henderson D 1976 Rev. Mod. Phys. 48 4
[4] Salvino L W and White J A 1992 J. Chem. Phys. 96 4559
[5] Zhou S 2006 Phys. Rev. E 74 031119
[6] Zhou S 2006 J. Chem. Phys. 125 144518
[7] Sivardiere J and Lajzerowicz J 1975 Phys. Rev. A 11 2090
[8] Schick M and Shih W H 1986 Phys. Rev. B 34 1797
[9] Newman K E and Dow J D 1983 Phys. Rev. B 27 7495
[10] Chen H H and Levy P M 1973 Phys. Rev. B 7 4267
[11] Hoston W and Berker A N 1991 Phys. Rev. Lett. 67 1027
[12] Netz R R and Berker A N 1993 Phys. Rev. B 47 15019
[13] Hoston W and Berker A N 1991 J. Appl. Phys. 70 6101
[14] Wang Y L and Wentworth C 1987 J. Appl. Phys. 61 4411
[15] Wang Y L, Lee F and Kimel J D 1987 Phys. Rev. B 36 8945
[16] Tanaka M and Kawabe T 1985 J. Phys. Soc. Jpn. 54 2194
[17] Kasono K and Ono I 1992 Z. Phys. B: Cond. Matter 88 205
[18] Lapinkas S and Rosengren A 1994 Phys. Rev. B 49 15190
[19] Ekiz C and Keskin M 2002 Phys. Rev. B 66 054105
[20] Tucker J W, Balcerzak T, Gzik M and Sukiennicks A 1998 J. Magn. Magn. Mater 187 381
[21] Keskin M and Erdin\c{c A 2004 J. Magn. Magn. Mater. 283 392
[22] Netz R R 1992 Europhys. Lett. 17 373
[23] Baran O R and Levitski R R 2002 Phys. Rev. B 65 172407
[24] Sefero\u{glu N and Kutlu B 2007 Physica A 374 165
[25] Creutz M 1983 Phys. Rev. Lett. 50 1411
[26] Kutlu B 2001 Int. J. Mod. Phys. C 12 1401
[27] Kutlu B, \"{Ozkan A, Sefero\u{glu N, Solak A and Binal B2005 Int. J. Mod. Phys. C 16 1933
[28] \"{Ozkan A, Sefero\u{glu N and Kutlu B 2006 Physica A 362 327
[29] Aktekin N 2000 Annual Reviews of Computational PhysicsV$\!$I$\!$I ed Stauffer D (Singapore: World Scientific) p 1
[30] Kutlu B 2003 Int. J. Mod. Phys. C 14 1305
[31] Kutlu B 1997 Physica A 234 807
[32] Sefero\u{glu N, \"{Ozkan A and Kutlu B 2006 Chin.Phys. Lett. 23 2526
[33] Binder K 1981 Z. Phys. B: Condensed Matter 43 119
[34] Privman V 1990 Finite Size Scaling and NumericalSimulation of Statistical Systems (Singapore: World Scientific)
Related articles from Frontiers Journals
[1] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 2040-2043
[2] XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice[J]. Chin. Phys. Lett., 2009, 26(9): 2040-2043
[3] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 2040-2043
[4] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 2040-2043
[5] LU Chang-Hong, SHI Qing-Fan, YANG Lei, SUN Gang. Air-Driven Segregation in Binary Granular Mixtures with Same Size but Different Densities[J]. Chin. Phys. Lett., 2008, 25(7): 2040-2043
[6] H. Demirel, A.Ozkan, B. Kutlu. Finite-Size Scaling Analysis of a Three-Dimensional Blume--Capel Model in the Presence of External Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(7): 2040-2043
[7] GUO Qiang, LIU Jian-Guo, WANG Bing-Hong, ZHOU Tao, CHEN Xing-Wen, YAO Yu-Hua. Opinion Spreading with Mobility on Scale-Free Networks[J]. Chin. Phys. Lett., 2008, 25(2): 2040-2043
[8] YAMG Meng-Long, LIU Yi-Guang, YOU Zhi-Sheng. A New Cellular Automata Model Considering Finite Deceleration and Braking Distance[J]. Chin. Phys. Lett., 2007, 24(10): 2040-2043
[9] N. Seferoglu, A. Ö, zkan, B. Kutlu. Finite Size Effect for the First-Order Phase Transition of the Three-Dimensional Blume--Capel Model on a Cellular Automaton[J]. Chin. Phys. Lett., 2006, 23(9): 2040-2043
[10] SHI Qing-Fan, SUN Gang, HOU Mei-Ying, LU Kun-Quan. Segregation in Vertically Vibrated Binary Granular Mixtures with Same Size[J]. Chin. Phys. Lett., 2006, 23(11): 2040-2043
[11] YANG Chun-Xia, ZHOU Tao, ZHOU Pei-Ling, LIU Jun, TANG Zi-Nan. Evolvement Complexity in an Artificial Stock Market[J]. Chin. Phys. Lett., 2005, 22(4): 2040-2043
[12] YOU Yu, LUO Meng-Bo, YING He-Ping, CHEN Qing-Hu. Short-Time Resistively-Shunted Junction Dynamic Study on Two-Dimensional Fully Frustrated XY Model[J]. Chin. Phys. Lett., 2003, 20(12): 2040-2043
[13] LIU Yin, QIN Xiao-Ying, WANG Li, ZHANG Ming-Xu. Structural Evolution of Nanostructured γ-Ni-28Fe Alloy Investigated by Using the Internal Friction Technique[J]. Chin. Phys. Lett., 2003, 20(1): 2040-2043
[14] LUO Meng-Bo, CHEN Qing-Hu, JIAO Zheng-Kuan. Influence of the Boundary Condition on the Short-Time Dynamic Behaviour of the Ising-Like Phase Transition in Square-Lattice Fully Frustrated XY Models[J]. Chin. Phys. Lett., 2002, 19(8): 2040-2043
[15] TANG Yan-Li, MA Yu-Qiang. Molecular Dynamics of Structural Organization in Binary Fluids with Fixed Particles[J]. Chin. Phys. Lett., 2002, 19(6): 2040-2043
Viewed
Full text


Abstract