Original Articles |
|
|
|
|
Critical Exponents for the Re-entrant Phase Transitions in the Three-Dimensional Blume--Emery--Griffiths Model on the Cellular Automaton |
N. Seferoglu1;B. Kutlu2 |
1GaziUniversitesi, Fen Bilimleri Enstitusu, Fizik Anabilim Dal\i, Ankara, Turkey 2GaziUniversitesi, Fen-Edebiyat Fakultesi, Fizik Bolumu, 06500 Teknikokullar, Ankara, Turkey |
|
Cite this article: |
N. Seferoglu, B. Kutlu 2007 Chin. Phys. Lett. 24 2040-2043 |
|
|
Abstract The critical behaviour of the three-dimensional Blume--Emery--Griffiths (BEG) model is investigated at D/J=0, -0.25 and -1 in the range of -1≤K/J≤0 for J=100. The simulations are carried out on a simple cubic lattice using the heating algorithm improved from the Creutz cellular automaton (CCA) under periodic boundary conditions. The universality of the model are obtained for re-entrant and double re-entrant phase transitions which occur at certain D/J and K/J parameters, with J and K representing the nearest-neighbour bilinear and biquadratic interactions, and D being the single-ion anisotropy parameter. The values of static critical exponents β, γ and υ are estimated within the framework of the finite-size scaling theory. The results are compatible with the universal Ising critical behaviour for all continuous phase transitions in these ranges.
|
Keywords:
64.60.Cn
64.60.Fr
|
|
Received: 15 February 2007
Published: 25 June 2007
|
|
|
|
|
|
[1] Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 4 1071 [2] Lajzerowicz J and Sivardiere J 1975 Phys. Rev. A 11 2079 [3] Barker J A and Henderson D 1976 Rev. Mod. Phys. 48 4 [4] Salvino L W and White J A 1992 J. Chem. Phys. 96 4559 [5] Zhou S 2006 Phys. Rev. E 74 031119 [6] Zhou S 2006 J. Chem. Phys. 125 144518 [7] Sivardiere J and Lajzerowicz J 1975 Phys. Rev. A 11 2090 [8] Schick M and Shih W H 1986 Phys. Rev. B 34 1797 [9] Newman K E and Dow J D 1983 Phys. Rev. B 27 7495 [10] Chen H H and Levy P M 1973 Phys. Rev. B 7 4267 [11] Hoston W and Berker A N 1991 Phys. Rev. Lett. 67 1027 [12] Netz R R and Berker A N 1993 Phys. Rev. B 47 15019 [13] Hoston W and Berker A N 1991 J. Appl. Phys. 70 6101 [14] Wang Y L and Wentworth C 1987 J. Appl. Phys. 61 4411 [15] Wang Y L, Lee F and Kimel J D 1987 Phys. Rev. B 36 8945 [16] Tanaka M and Kawabe T 1985 J. Phys. Soc. Jpn. 54 2194 [17] Kasono K and Ono I 1992 Z. Phys. B: Cond. Matter 88 205 [18] Lapinkas S and Rosengren A 1994 Phys. Rev. B 49 15190 [19] Ekiz C and Keskin M 2002 Phys. Rev. B 66 054105 [20] Tucker J W, Balcerzak T, Gzik M and Sukiennicks A 1998 J. Magn. Magn. Mater 187 381 [21] Keskin M and Erdin\c{c A 2004 J. Magn. Magn. Mater. 283 392 [22] Netz R R 1992 Europhys. Lett. 17 373 [23] Baran O R and Levitski R R 2002 Phys. Rev. B 65 172407 [24] Sefero\u{glu N and Kutlu B 2007 Physica A 374 165 [25] Creutz M 1983 Phys. Rev. Lett. 50 1411 [26] Kutlu B 2001 Int. J. Mod. Phys. C 12 1401 [27] Kutlu B, \"{Ozkan A, Sefero\u{glu N, Solak A and Binal B2005 Int. J. Mod. Phys. C 16 1933 [28] \"{Ozkan A, Sefero\u{glu N and Kutlu B 2006 Physica A 362 327 [29] Aktekin N 2000 Annual Reviews of Computational PhysicsV$\!$I$\!$I ed Stauffer D (Singapore: World Scientific) p 1 [30] Kutlu B 2003 Int. J. Mod. Phys. C 14 1305 [31] Kutlu B 1997 Physica A 234 807 [32] Sefero\u{glu N, \"{Ozkan A and Kutlu B 2006 Chin.Phys. Lett. 23 2526 [33] Binder K 1981 Z. Phys. B: Condensed Matter 43 119 [34] Privman V 1990 Finite Size Scaling and NumericalSimulation of Statistical Systems (Singapore: World Scientific) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|