Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2501-2504    DOI:
Original Articles |
Ground-State Properties of Charged Bosons Confined in a One-Dimensional Harmonic Double-Well Trap: Diffusion Monte Carlo Calculations
JIN Jing;TANG Yi
Institute of Modern Physics, Xiangtan University, Xiangtan 411105
Cite this article:   
JIN Jing, TANG Yi 2007 Chin. Phys. Lett. 24 2501-2504
Download: PDF(296KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The diffusion Monte Carlo method is applied to study the ground-state
properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well
separation and has a minimal value. If the well separation increases continually, the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition, by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.
Keywords: 05.30.Jp      03.75.Fi      71.45.Gm     
Received: 29 March 2007      Published: 16 August 2007
PACS:  05.30.Jp (Boson systems)  
  03.75.Fi  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Jing
TANG Yi
[1] Anderson M H, Enscher J R, Matthews M R, Wieman C E andCornell E A 1995 Science 269 198
[2] Davis K B, Mewes M -O, Andrews M R, van Druten N J, Durfee DS, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[4] Capuzzi P and Herna\'ndez E S 1999 Phys. Rev. A 591488
[5] Ng H T, Law C K and Leung P T 2003 Phys. Rev. A 68013604
[6] QIU J G 2006 Chin. Phys. Lett. 23 1387
[7] Andrews M R, Townsend C G, Miesner H J, Drufee D S, Kurn D M,and Ketterle W 1997 Science 275 637
[8] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950
[9] Streltsov A I and Cederbaum L S 2004 Phys. Rev. A 70 053607
[10] Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E andLeanhardt A E 2004 Phys. Rev. Lett. 92 050405
[11] Rey A M, Satija I I and Clark C W 2006 Phys. Rev. A 73 063610
[12] Priyadarshee A, Chandrasekharan S, Lee J -W and Baranger H U2006 Phys. Rev. Lett. 97 115703
[13] Alexandrov A S 2006 Phys. Rev. Lett. 96 147003
[14] Alexandrov A S and Edwards P P 2000 Physica C 331 97
[15] Palo S D, Castellani C, Castro C D and Chakraverty B K 1999 Phys. Rev. B 60 564
[16] Gonzalez A, Partoens B, Matulis A and Peeters F M 1999 Phys. Rev. B 59 1653
[17] Tanatar B, Davoudi B and Kohandel M 2000 Phys.Rev. B 62 12597
[18] Davoudi B, Strepparola E, Tanatar B and Tosi M P 2001 Phys. Rev. B 63 104505
[19] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S1999 Rev. Mod. Phys. 71 463
[20] Mahmud K W, Kutz J N and Reinhardt W P 2002 Phys. Rev.A 66 063607
[21] Minguzzi A, Succi S, Toschi F, Tosi M P and Vignolo P 2004 Phys. Rep. 395 223
[22] Moroni S, Conti S and Tosi M P 1996 Phys. Rev. B 53 9688
[23] Palo S D, Conti S and Moroni S 2004 Phys. Rev. B 69 035109
[24] Reynolds P J, Ceperley D M, Alder B J and Lester W A 1982 J. Chem. Phys. 77 5593
[25] Foulkes W M C, Mtias L, Needs R J and Rajagopal G2001 Rev. Mod. Phys. 73 33
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 2501-2504
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 2501-2504
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 2501-2504
[4] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 2501-2504
[5] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 2501-2504
[6] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 2501-2504
[7] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 2501-2504
[8] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 2501-2504
[9] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 2501-2504
[10] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 2501-2504
[11] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 2501-2504
[12] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 2501-2504
[13] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 2501-2504
[14] QIAN Jun, QIAN Yong, KE Min, YAN Bo, CHENG Feng, ZHOU Shu-Yu, WANG Yu-Zhu. Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling[J]. Chin. Phys. Lett., 2010, 27(10): 2501-2504
[15] HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System[J]. Chin. Phys. Lett., 2009, 26(8): 2501-2504
Viewed
Full text


Abstract