Original Articles |
|
|
|
|
Ground-State Properties of Charged Bosons Confined in a One-Dimensional Harmonic Double-Well Trap: Diffusion Monte Carlo Calculations |
JIN Jing;TANG Yi |
Institute of Modern Physics, Xiangtan University, Xiangtan 411105 |
|
Cite this article: |
JIN Jing, TANG Yi 2007 Chin. Phys. Lett. 24 2501-2504 |
|
|
Abstract The diffusion Monte Carlo method is applied to study the ground-state properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well separation and has a minimal value. If the well separation increases continually, the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition, by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.
|
Keywords:
05.30.Jp
03.75.Fi
71.45.Gm
|
|
Received: 29 March 2007
Published: 16 August 2007
|
|
PACS: |
05.30.Jp
|
(Boson systems)
|
|
03.75.Fi
|
|
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
|
|
|
[1] Anderson M H, Enscher J R, Matthews M R, Wieman C E andCornell E A 1995 Science 269 198 [2] Davis K B, Mewes M -O, Andrews M R, van Druten N J, Durfee DS, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687 [4] Capuzzi P and Herna\'ndez E S 1999 Phys. Rev. A 591488 [5] Ng H T, Law C K and Leung P T 2003 Phys. Rev. A 68013604 [6] QIU J G 2006 Chin. Phys. Lett. 23 1387 [7] Andrews M R, Townsend C G, Miesner H J, Drufee D S, Kurn D M,and Ketterle W 1997 Science 275 637 [8] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950 [9] Streltsov A I and Cederbaum L S 2004 Phys. Rev. A 70 053607 [10] Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E andLeanhardt A E 2004 Phys. Rev. Lett. 92 050405 [11] Rey A M, Satija I I and Clark C W 2006 Phys. Rev. A 73 063610 [12] Priyadarshee A, Chandrasekharan S, Lee J -W and Baranger H U2006 Phys. Rev. Lett. 97 115703 [13] Alexandrov A S 2006 Phys. Rev. Lett. 96 147003 [14] Alexandrov A S and Edwards P P 2000 Physica C 331 97 [15] Palo S D, Castellani C, Castro C D and Chakraverty B K 1999 Phys. Rev. B 60 564 [16] Gonzalez A, Partoens B, Matulis A and Peeters F M 1999 Phys. Rev. B 59 1653 [17] Tanatar B, Davoudi B and Kohandel M 2000 Phys.Rev. B 62 12597 [18] Davoudi B, Strepparola E, Tanatar B and Tosi M P 2001 Phys. Rev. B 63 104505 [19] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S1999 Rev. Mod. Phys. 71 463 [20] Mahmud K W, Kutz J N and Reinhardt W P 2002 Phys. Rev.A 66 063607 [21] Minguzzi A, Succi S, Toschi F, Tosi M P and Vignolo P 2004 Phys. Rep. 395 223 [22] Moroni S, Conti S and Tosi M P 1996 Phys. Rev. B 53 9688 [23] Palo S D, Conti S and Moroni S 2004 Phys. Rev. B 69 035109 [24] Reynolds P J, Ceperley D M, Alder B J and Lester W A 1982 J. Chem. Phys. 77 5593 [25] Foulkes W M C, Mtias L, Needs R J and Rajagopal G2001 Rev. Mod. Phys. 73 33 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|