Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2521-2524    DOI:
Original Articles |
Development of the Technique for Fabricating Submicron Moire Gratings on Metal Materials Using Focused Ion Beam Milling
DU Hua1;XIE Hui-Min1;GUO Zhi-Qiang1;LUO Qiang2;GU Chang-Zhi2;QIANG Hai-Chang3;RONG Li-Jian3
1FML, Department of Engineering Mechanics, Tsinghua University, Beijing 1000842Institute of Physics, Chinese Academic of Sciences, Beijing 1000803Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:   
DU Hua, XIE Hui-Min, GUO Zhi-Qiang et al  2007 Chin. Phys. Lett. 24 2521-2524
Download: PDF(1450KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A focused gallium ion (Ga+) beam is used to fabricate micro/submicron spacing gratings on the surface of porous NiTi shape memory alloy (SMA). The crossing type of gratings with double-frequency (2500l/mm and 5000l/mm) using the focused ion beam (FIB) milling are successfully produced in a combination mode or superposition mode. Based on the double-frequency gratings, high-quality scanning electron microscopy (SEM) Moire patterns are obtained to study the micro-scale deformation of porous NiTi SMA. The grating fabrication technique is discussed in detail. The experimental results verify the feasibility of fabricating high frequency grating on metal surface using FIB milling.
Keywords: 07.10.Pz      68.35.Gy      42.30.Ms      61.43.Gt     
Received: 13 March 2007      Published: 16 August 2007
PACS:  07.10.Pz (Instruments for strain, force, and torque)  
  68.35.Gy (Mechanical properties; surface strains)  
  42.30.Ms (Speckle and moiré patterns)  
  61.43.Gt (Powders, porous materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02521
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Hua
XIE Hui-Min
GUO Zhi-Qiang
LUO Qiang
GU Chang-Zhi
QIANG Hai-Chang
RONG Li-Jian
[1] Morse S, Durelli A J and Sciamarella C A 1960 J. Eng.Mech. Div. ASCE 86 105
[2] Sciammarella C A and Durelli A J 1961 J. Eng. Mech. Div. ASCE 87 55
[3] Durelli A J and Parks V J 1970 Moire Analysis ofStrain (Englewood Cliffs, NJ: Prentice-Hall)
[4] Theocaris S 1969 Moire Fringe in Strain Analysis (Oxford:Pergamon)
[5] Chiang F-P 1989 Moire methods of Strain Analysis Manual onExperimental Stress Analysis ed J F Doyle and J W Philips (Bethel,CT: Society for Experimental Mechanics) 5th edn chap 7
[6] Xie H, Peter D, Dai F et al 1995 Experimental Techniques 19 28
[7] Post D, Han B and Ifju P 1994 High Sensitivity Moire (Berlin:Springer)
[8] Dally J W and Read D T 1993 Exp. Mech. 33 270
[9] Read D T, Dally J W and Szanto M 1993 Exp. Mech. 33 110
[10] Xie H, Kishimoto S and Shinya N 2000 Opt. LaserTechnol. 32 361
[11] Xie H, Li B et al 2003 Opt. Lasers in Engin. 40 163
[12] Li B, Xie H et al 2002 J. Microelectromech. Systems 11 829
[13] Xie H, Shang H et al 2003 Rev. Sci. Instrum. 74 256
[14] Morimoto H, Sasaki Y, Saitoh K, Watakabe Y and Kato T 1986 Microelectron. Engin. 4 163
[15] Overwijk M H F, Vandenheuvel F C and Bullelieuwma C W T 1993 J. Vac. Sci. Technol. B 11 2021
[16] Reyntjens S and Puers R 2001 J. Micromech. Microengin. 11 287
Related articles from Frontiers Journals
[1] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 2521-2524
[2] JIANG Ming, TANG Min-Jin, WU Hao, LI Yan-Jie, XIE Hui-Min. FIB Moiré Gratings and Their Application in the Measurement of Optical Fibers' Mechanical Properties[J]. Chin. Phys. Lett., 2012, 29(3): 2521-2524
[3] ZHU Yun, WANG Yue, WAN Peng-Fei, LI Hong-Yu, WANG Shou-Yu. Optical and Mechanical Properties of Transparent Conductive Al-Doped ZnO Films Deposited by the Sputtering Method[J]. Chin. Phys. Lett., 2012, 29(3): 2521-2524
[4] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 2521-2524
[5] LIU Jian-Lin**, XIA Re, ZHOU Yue-Ting . Stiction of a Nano-Beam with Surface Effect[J]. Chin. Phys. Lett., 2011, 28(11): 2521-2524
[6] LIU Man, SONG Hong-Sheng, CHEN Xiao-Yi, LIU Gui-Yuan, TENG Shu-Yun, CHENG Chuan-Fu. Intensity Distribution and Phase Vortices of Speckle Fields Generated by Multi-Aperture Random Scattering Screens[J]. Chin. Phys. Lett., 2010, 27(3): 2521-2524
[7] XU Ai-Guo, ZHANG Guang-Cai, LI Hua, ZHU Jian-Shi. Comparison Study on Characteristic Regimes in Shocked Porous Materials[J]. Chin. Phys. Lett., 2010, 27(2): 2521-2524
[8] QIU Wei, KANG Yi-Lan, LEI Zhen-Kun, QIN Qing-Hua, LI Qiu. A New Theoretical Model of a Carbon Nanotube Strain Sensor[J]. Chin. Phys. Lett., 2009, 26(8): 2521-2524
[9] TANG Yi-Zhe, ZHENG Zhi-Jun, XIA Meng-Fen, BAI Yi-Long. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials[J]. Chin. Phys. Lett., 2009, 26(12): 2521-2524
[10] WANG Kun, DING Zhi-Bo, LI Lin, YAO Shu-De. Depth Dependence of Tetragonal Distortion of a ZnO/Mg0.1Zn0.9O/ZnO Heterostructure Studied by Rutherford Backscattering/Channeling[J]. Chin. Phys. Lett., 2009, 26(10): 2521-2524
[11] AN Xi-Zhong. Evolution of Voronoi/Delaunay Characterized Micro Structure with Transition from Loose to Dense Sphere Packing[J]. Chin. Phys. Lett., 2007, 24(8): 2521-2524
[12] AN Xi-Zhong. Discrete Element Method Numerical Modelling on Crystallization of Smooth Hard Spheres under Mechanical Vibration[J]. Chin. Phys. Lett., 2007, 24(7): 2521-2524
[13] A. Boumaiza, T. Baudin, N. Rouag, R. Penelle. Electron Backscattered Diffraction of Transgranular Crack Propagation in Soft Steel[J]. Chin. Phys. Lett., 2007, 24(6): 2521-2524
[14] GE Jin, YIN Wen-Jing, LONG Yong-Fu, DING Xun-Min, HOU Xiao-Yuan. Positive and Negative Pulse Etching Method of Porous Silicon Fabrication[J]. Chin. Phys. Lett., 2007, 24(5): 2521-2524
[15] ZHU Ke, LI Cheng-Feng, ZHU Zhen-Gang. Measurement of Electrical Conductivity of Porous Titanium and Ti6Al4V Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2007, 24(1): 2521-2524
Viewed
Full text


Abstract