Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2661-2663    DOI:
Original Articles |
Effect of Precursor Molar Ratio of [S2-]/[Zn2+] on Particle Size and Photoluminescence of ZnS:Mn2+ Nanocrystals
DONG Dong-Qing1;LI Lan1;ZHANG Xiao-Song1,2;HAN Xu1;AN Hai-Ping1
1Institute of Materials Physics, and Tianjin Key Laboratory for Optoelectronic Materials and Devices, Tianjin University of Technology, 3003842Institute of Modern Optics, Nankai University, Tianjin 300071
Cite this article:   
DONG Dong-Qing, LI Lan, ZHANG Xiao-Song et al  2007 Chin. Phys. Lett. 24 2661-2663
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the influence of precursor molar ratio of [S2-]/[Zn2+] on particle size and photoluminescence (PL) of ZnS:Mn2+ nanocrystals. By changing the [S2-]/[Zn2+] ratio from 0.6 (Zn-rich) to 2.0 (S-rich), the particle size increases from nearly 2.7nm to about 4.0nm. The increase in the ratio of [S2-]/[Zn2+] causes a decrease of PL emission intensity of ZnS host while a distinct increase of Mn2+ emission. The maximum intensity for the luminescence of Mn2+ emission is observed at the ratio of [S2-]/[Zn2+]≈1.5. The possible mechanism for the results is discussed by filling of S2- vacancies and the increase of Mn2+ ions incorporated into ZnS lattices.
Keywords: 73.63.Bd      73.63.Kv      74.25.Gz     
Received: 30 May 2007      Published: 16 August 2007
PACS:  73.63.Bd (Nanocrystalline materials)  
  73.63.Kv (Quantum dots)  
  74.25.Gz (Optical properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02661
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Dong-Qing
LI Lan
ZHANG Xiao-Song
HAN Xu
AN Hai-Ping
[1] Alivisatos A P 1996 Science 27 933
[2] Brus L E 1984 J. Chem. Phys. 80 4403
[3] Alvarez M M, Khoury J T and Gregory S T 1984 J. Phys.Chem. B 101 3706
[4] Wang Y and Herron N 1991 J. Phys. Chem. 95 525
[5] Bhargava R N, Gallagher D and Hong X 1994 Phys. Rev. Lett. 72 416
[6] Bhargava R N 1996 J. Lumin. 70 85
[7] Willard D M, Carillo L L, Jung J and Orden A V 2001 Nano Lett. 1 469.
[8] Yang H S, Holloway P H and Ratna B B 2003 J. Appl. Phys. 93 586
[9] Ge J P, Wang J W, Zhang H X, Wang X and Peng Q 2005 Adv.Funct. Mater. 15 303
[10] Suyver J F, Wuister S F, Kelly J J and Meijerink A 2001 Nano Lett. 1 429
[11] Kasai P H and Otomo Y 1962 J. Chem. Phys. 37 1263
[12] Weisbuch C and Vinter B 1991 Quantum SemiconductorStructures: Fundamentals and Applications (San Diego: Academic) p 318
[13] Bol1 A A and Meijerink A 1998 Phys. Rev. B 58 15997
[14] Cao L X, Zhang J H and Ren S L 2002 Appl. Phys. Lett. 80 4300
[15] Murase N, Jagannathan R and Kanematsu Y 1999 J. Phys.Chem. B 103 754
[16] Marfunin A S 1979 Spectroscopy, Luminescence and RadiationCenters in Minerals (New York: Academic) p 516
[17] Manzoor K, Vadera S R, Kumar N and Kutty R R N 2003 Mater. Chem. Phys. 82 718
[18] Kopec P J, Canny B and Syfosse G 1983 J. Lumin. 28 319
[19] Sooklal K, Cullum B S and Angel S M 1996 J. Phys. Chem. 100 4551
[20] Erwin S C, Zu L, Haftel M I, Efros A L and Kennedy T A 2005 Nature 436 91
Related articles from Frontiers Journals
[1] ZHU Li-Dan, SUN Fang-Yuan, ZHU Jie, TANG Da-Wei, LI Yu-Hua, GUO Chao-Hong. Nano-Metal Film Thermal Conductivity Measurement by using the Femtosecond Laser Pump and Probe Method[J]. Chin. Phys. Lett., 2012, 29(6): 2661-2663
[2] PENG Juan**,LI Shu-Shen. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(4): 2661-2663
[3] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 2661-2663
[4] GONG Sai, WANG Yue-Hua**, ZHAO Xin-Yin, ZHANG Min, ZHAO Na, DUAN Yi-Feng . Structural, Electronic and Optical Properties of BiAl xGa1−xO3 (x=0, 0.25, 0.5 and 0.75)[J]. Chin. Phys. Lett., 2011, 28(8): 2661-2663
[5] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 2661-2663
[6] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 2661-2663
[7] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 2661-2663
[8] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 2661-2663
[9] CHENG Jin, , ZOU Xiao-Ping, SONG Wei-Li, CAO Mao-Sheng, SU Yi, YANG Gang-Qiang, , Lü Xue-Ming, ZHANG Fu-Xue,. Shape-Controlled Synthesis and Related Growth Mechanism of Pb(OH)2 Nanorods by Solution-Phase Reaction[J]. Chin. Phys. Lett., 2010, 27(5): 2661-2663
[10] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 2661-2663
[11] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 2661-2663
[12] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 2661-2663
[13] SHAO Jia-Feng, A. G. U. Perera, P. V. V. Jayaweera, HE De-Yan. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(2): 2661-2663
[14] LU Hong-Yan, WAN Yuan, HE Xiang-Mei, WANG Qiang-Hua. Mechanism of Pseudogap Detected by Electronic Raman Scattering: Phase Fluctuation or Hidden Order?[J]. Chin. Phys. Lett., 2009, 26(9): 2661-2663
[15] XU Zhang-Cheng, ZHANG Ya-Ting, Jø, rn M. Hvam, Yoshiji Horikoshi. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers[J]. Chin. Phys. Lett., 2009, 26(5): 2661-2663
Viewed
Full text


Abstract