Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2910-2913    DOI:
Original Articles |
A New Cellular Automata Model Considering Finite Deceleration and Braking Distance
YAMG Meng-Long1;LIU Yi-Guang1,2;YOU Zhi-Sheng1
1Institute of Image and Graphics, School of Computer Science and Engineering, Sichuan University, Chengdu 6100642Center for Nonlinear and Complex Systems, School of Electronic Engineering, University of Electronic Engineering, University of Electronic Science and Technology, Chengdu 610054
Cite this article:   
YAMG Meng-Long, LIU Yi-Guang, YOU Zhi-Sheng 2007 Chin. Phys. Lett. 24 2910-2913
Download: PDF(303KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new cellular automata model for one-lane traffic flow. In this model, we consider the driver prejudgment according to the state of the leading car. We also consider that the vehicle deceleration capability is finite and the braking distance of the high-speed running cars cannot be ignored, which is not considered in most models. Furthermore, comfortable driving is considered, too. Using computer simulations we obtain some basic qualitative results and the fundamental diagram of the proposed model. In comparison with the known models, we find that the fundamental diagram of the proposed model is more realistic than that of the known models.
Keywords: 64.60.Cn      02.60.Cb      05.70.Ln     
Received: 08 March 2007      Published: 20 September 2007
PACS:  64.60.Cn (Order-disorder transformations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02910
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAMG Meng-Long
LIU Yi-Guang
YOU Zhi-Sheng
[1] Schreckenberg M and Wolf D E 1998 Traffic and GranularFlow'97 (Singapore: Springer)
[2] Helbing D et al 2000 Traffic and Granular Flow'99 (Berlin:Springer)
[3] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[4] Helbing D 2001 Rev. Mod. Phys. 73 1067
[5] Lighthill M J and Whitham G B 1955 Proc. R. Soc. London A 229 317
[6] Payne H J 1971 Simulation Council Proc. 1 51
[7] Wolfram S 1986 Theory and Application of Cellular Automata(Singapore: World Scientific)
[8] Nagel K and Schreckenberg M 1992 J. Physique I 2 2221
[9] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[10] Boccara N, Fuks H and Zeng Q 1997 J. Phys. A: Math.Gen. 30 3329
[11] Huang D W 1998 Physica A 260 106
[12] Moussa N 2003 Phys. Rev. E 68 036127
[13] Fukui M and Ishibashi Y 1996 J. Phys. Soc. Jpn. 65 1868
[14] Knospe et al 2002 J. Phys. A 35 9971
[15] Lee H K et al 2004 Phys. Rev. Lett. 92 238702
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2910-2913
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2910-2913
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 2910-2913
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 2910-2913
[5] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 2910-2913
[6] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 2910-2913
[7] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2910-2913
[8] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 2910-2913
[9] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 2910-2913
[10] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 2910-2913
[11] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 2910-2913
[12] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 2910-2913
[13] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 2910-2913
[14] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 2910-2913
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 2910-2913
Viewed
Full text


Abstract