Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2926-2929    DOI:
Original Articles |
Quantum Phase Transition and Ferromagnetic Spin Correlation in Parallel Double Quantum Dots
DING Guo-Hui1;YE Fei2
1Department of Physics, Shanghai Jiao Tong University, Shanghai 2002402Center for Advanced Study, Tsinghua University, Beijing 100084
Cite this article:   
DING Guo-Hui, YE Fei 2007 Chin. Phys. Lett. 24 2926-2929
Download: PDF(242KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and
small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.
Keywords: 72.15.Qm      73.21.La      73.40.Gk     
Received: 09 July 2007      Published: 20 September 2007
PACS:  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.21.La (Quantum dots)  
  73.40.Gk (Tunneling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02926
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Guo-Hui
YE Fei
[1] van der Wiel W G, De Franceschi S, Elzerman J M,Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[2] Blick R H et al 1998 Phys. Rev. Lett. 80 4032 Schedelbeck G et al 1997 Science 278 1792 Oosterkamp T H et al 1998 Nature 395 873 Jeong H et al 2001 Science 293 2221
[3] Chen J C, Chang A M and Melloch M R 2004 Phys. Rev. Lett. 92 176801 Holleitner A W et al 2002 Science 297 70 Holleitner A W et al 2001 Phys. Rev. Lett. 87 256802
[4]Georges A and Meir Y 1999 Phys. Rev. Lett. 82 3508
[5] Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946
[6] L\'opez R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
[7] Borda L, Zar\'and G, Hofstetter W, Halperin B Iand Delft J V 2003 Phys. Rev. Lett. 90 026602
[8] Galpin M R, Logan D E and Krishnamurthy H R 2005 Phys. Rev. Lett. 94 186406
[9] Martins G B, B\"usser C A, Al-Hassanieh K A,Moreo A and Dagotto E 2005 Phys. Rev. Lett. 94 026804
[10] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71205313
[11] Wilson K G 1975 Rev. Mod. Phys. 47 773
[12] Krishna-Murthy H R, Wilkins J W and Wilson K G1980 Phys. Rev. B 21 1003 Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys.Rev. B 21 1044
[13] Costic T A, Hewson A C and Zlati\'c V 1994 J.Phys. Condens. Matter 6 2519
[14] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[15] Izumida W, Sakai O and Tarucha S 2001 Phys. Rev. Lett. 87 216803
Related articles from Frontiers Journals
[1] HUANG Rui**,MING Shan-Wen,WANG Yong. The Kondo and Fano Effects in Triple Quantum Dots Coupled to Noncollinear Ferromagnetic Leads[J]. Chin. Phys. Lett., 2012, 29(4): 2926-2929
[2] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 2926-2929
[3] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 2926-2929
[4] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 2926-2929
[5] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 2926-2929
[6] LIU Yu**, CHENG Fang . Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2011, 28(6): 2926-2929
[7] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 2926-2929
[8] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 2926-2929
[9] P. Nalini, A. John Peter** . Energy Gap Dependence on Mn Content in a Diluted Magnetic Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(4): 2926-2929
[10] ZHOU Xiao-Hao**, CHEN Ping-Ping, CHEN Xiao-Shuang, LU Wei . Temperature-Dependent Optical Properties of InAs/GaAs Self-Assembled Quantum Dots: Spectroscopic Measurements and an Eight-Band Study[J]. Chin. Phys. Lett., 2011, 28(11): 2926-2929
[11] LIU Tao**, HUANG Zheng . High-Efficiency Graphene Photo Sensor Using a Transparent Electrode[J]. Chin. Phys. Lett., 2011, 28(10): 2926-2929
[12] JI Shuai-Hua, FU Ying-Shuang, ZHANG Tong, CHEN Xi, JIA Jin-Feng, XUE Qi-Kun, MA Xu-Cun. Kondo Effect in Self-Assembled Manganese Phthalocyanine Monolayer on Pb Islands[J]. Chin. Phys. Lett., 2010, 27(8): 2926-2929
[13] WANG Li-Jun, ZHU Yu-Zhuan, WANG Xiao-Ping, ZHANG Shi, LIU Xin-Xin, LI Huai-Hui, MEI Cui-Yu, LIU Xiao-Fei. Field Electron Emission from Caterpillar-Like Clavae Nano-Structure Carbon Thin Films[J]. Chin. Phys. Lett., 2010, 27(8): 2926-2929
[14] ZHAO Wei, YU Zhong-Yuan, LIU Yu-Min, FENG Hao, XU Zi-Huan. Research of Equilibrium Composition Map in Conic Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(5): 2926-2929
[15] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 2926-2929
Viewed
Full text


Abstract