Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3028-3031    DOI:
Original Articles |
An Improvement of the Asymptotic Iteration Method for Exactly Solvable Eigenvalue Problems
I. Boztosun;M. Karakoc
Faculty of Arts and Sciences, Department of Physics, Erciyes University, Kayseri, Turkey
Cite this article:   
I. Boztosun, M. Karakoc 2007 Chin. Phys. Lett. 24 3028-3031
Download: PDF(191KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We derive a formula that simplifies the original asymptotic iteration method formulation to find the energy eigenvalues for the analytically solvable cases. We then show that there is a connection between the asymptotic iteration and the Nikiforov--Uvarov methods, which both solve the second order linear ordinary differential equations analytically.
Keywords: 03.65.Ge     
Received: 27 July 2007      Published: 23 October 2007
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03028
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
I. Boztosun
M. Karakoc
[1] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math.Gen. 36 11807
[2] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math.Gen. 38 1147
[3] Nikiforov A F and Uvarov V B 1988 Special Functions ofMathematical Physics (Basel: Birkhauser)
[4] Cheng Y F and Dai T Q 2007 Physica Scripta 75 274
[5] Gonul B and Koksal K 2007 Physica Scripta 75 686
[6] Egrifes H, Demirhan D and Buyukkilic F 1999 PhysicaScripta 59 90
[7] Aktas M and Sever R 2005 J. Phys. Math. Chem. 37 139
[8] Yasuk F, Berkdemir C and Berkdemir A 2005 J. Phys. A: Math.Gen. 38 6579
[9] Yasuk F, Durmus A and Boztosun I 2006 J. Math. Phys. 47 082302
[10] Boztosun I, Karakoc M, Yasuk F and Durmus A 2006 J. Math.Phys. 47 062301
[11] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[12] Aygun M, Bayrak O and Boztosun I 2007 J. Phys. B: At. Mol.Opt. Phys. 40 537
[13] Fern\'{andez F M 2004 J. Phys. A: Math. Gen. 37 6173
[14] Barakat T 2006 J. Phys. A: Math. Gen. 39 823
[15] Saad N, Hall R L and Ciftci H 2006 J. Phys. A: Math.Gen. 39 13445
[16] Bayrak O and Boztosun I 2006 J. Mol. Struct.: Theochem. 802 17
[17] Bayrak O, Boztosun I and Ciftci H 2007 Int. J. QuantumChem. 107 540
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3028-3031
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3028-3031
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3028-3031
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3028-3031
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3028-3031
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3028-3031
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3028-3031
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3028-3031
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3028-3031
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 3028-3031
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 3028-3031
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 3028-3031
[13] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 3028-3031
[14] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 3028-3031
[15] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 3028-3031
Viewed
Full text


Abstract