Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3276-3279    DOI:
Original Articles |
Molecular Dynamics Simulation of Water Confined in Carbon Nanotubes
WANG Yan;YUAN Hong-Jun
Department of Physics, Ocean University of China, Qingdao 266100
Cite this article:   
WANG Yan, YUAN Hong-Jun 2007 Chin. Phys. Lett. 24 3276-3279
Download: PDF(1110KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular dynamics simulations are performed for water confined in carbon nanotubes with various diameters (11.0--13.8AA). The simulations under an isobaric pressure (one atmosphere) by lowering temperatures from 300K to 190K are carried out. Water molecules within variously sized tubes tend to transform from disorder to order with different configurations (four-water-molecule ring, six-water-molecule ring and seven-water-molecule ring) at phase transition temperatures, which may be lowered by the increasing tube radius. It is also found that the configurations of water in (10, 10) tube are not unique (seven-molecule ring and seven-molecule ring plus water chain).
Keywords: 83.10.Rp      64.70.-p      61.20.Ja      65.80.+n     
Received: 05 February 2007      Published: 23 October 2007
PACS:  83.10.Rp  
  64.70.-p (Specific phase transitions)  
  61.20.Ja (Computer simulation of liquid structure)  
  65.80.+n  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03276
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yan
YUAN Hong-Jun
[1] Iijima S 1991 Nature 354 56
[2] Dresselhaus M S, Dresselhaus G and Eklund P C 1996 Science ofFullerenes and Carbon Nanotubes (San Diego: Academic) p 757
[3] Fan X et al 2000 Phys. Rev. Lett. 84 4621
[4] Franks F 1972 Water: A Comprehensive Treatise (New York:Plenum) vol 1
[5] Tsang S C, Chen Y K, Harris P J F and Green M L H 1994 Nature 372 159
[6] Lobban C, Finney J L and Kuhs W F 2000 J. Chem. Phys. 112 7169
[7] Hamada N, Sawada S O and Shiyama A 1992 Phys. Rev. Lett. 68 1579
[8] Neria E, Fischer S and Karplus M 1996 J. Chem. Phys. 105 1902
[9] Dong S L, Kolesnikov A I and Li J C 1999 Physica B 263-264 429
[10] Humphrey W, Dalke A and Schulten K 1996 J. Molec. Graphics: VMD-Visual Molecular Dynamics 14.1 33
[11] Pauling L 1932 J. Am. Chem. Soc. 54 3570
[12] Kenichiro K, Gao G T, Tanaka H and Zeng X C 2001 Nature 414 188 Kenichiro K, Gao G T, Tanaka H and Zeng X C 2001 Nature 412802
[13] Durell S R and Wallqvist A 1996 J Biophys. 71 1695 Frank H S and Evans M W 1945 J. Chem. Phys. 13 478
[14] Wang Y and Dong S L 2003 Phys. Rev. B 68 172201
[15] William H N, Kevin D A, Richard E S and Ma J P 2002 Chem.Phys. Lett. 355 445
Related articles from Frontiers Journals
[1] YANG Lin-Hong, DONG Hong-Xing, SUN Zheng, SUN Liao-Xin, SHEN Xue-Chu, CHEN Zhang-Hai** . Temperature-Induced Phase Transition of In2O3 from a Rhombohedral Structure to a Body-Centered Cubic Structure[J]. Chin. Phys. Lett., 2011, 28(8): 3276-3279
[2] GAO Yu-Feng, YANG Yang, SUN De-Yan** . Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study[J]. Chin. Phys. Lett., 2011, 28(3): 3276-3279
[3] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 3276-3279
[4] YIN Bing, DONG Shun-Le. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures[J]. Chin. Phys. Lett., 2009, 26(8): 3276-3279
[5] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 3276-3279
[6] ZHOU Li-Jun, GUO Jian-Gang, ZHAO Ya-Pu. Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm[J]. Chin. Phys. Lett., 2009, 26(6): 3276-3279
[7] WANG Hai-Yan, CHEN Yan, LIU Yu-Wen, LI Fei, LIU Jian-Hua, PENG Gui-Rong, WANG Wen-Kui. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process[J]. Chin. Phys. Lett., 2009, 26(10): 3276-3279
[8] HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(8): 3276-3279
[9] CAO Bing-Yang, HOU Quan-Wen. Thermal Conductivity of Carbon Nanotubes Embedded in Solids[J]. Chin. Phys. Lett., 2008, 25(4): 3276-3279
[10] ZHANG Ji-Qiao, PAN Xia-Hui, YU Shou-Wen, FENG Xi-Qiao. Elastic Analysis of Physisorption-Induced Substrate Deformation[J]. Chin. Phys. Lett., 2008, 25(1): 3276-3279
[11] GE Yong, DONG Jin-Ming. Heat Conductivity of One-Dimensional Carbon Chain in an External Potential[J]. Chin. Phys. Lett., 2007, 24(9): 3276-3279
[12] WANG Li, ZHANG Yan-Ning, MAO Xiu-Ming, PENG Chuan-Xiao. Formation of NiZr2 Binary Metallic Glass: Experimental and Molecular Dynamics Analyses[J]. Chin. Phys. Lett., 2007, 24(8): 3276-3279
[13] WANG Yan, DONG Shun-Le. Structural Evolution of Compressing Amorphous Ice[J]. Chin. Phys. Lett., 2007, 24(4): 3276-3279
[14] CHEN Xiao-Ming, FEI Guang-Tao, CUI Ping. Size-Dependent Melting Behaviour of Nanometre-Sized Pb Particles Studied by Dynamic Mechanical Analysis[J]. Chin. Phys. Lett., 2006, 23(6): 3276-3279
[15] SUN Yong-Li, SUN Min-Hua, LI Jia-Yun, WANG Ai-Ping, MA Cong-Xiao, CHENG Wei-Dong, LIU Fang. Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon[J]. Chin. Phys. Lett., 2006, 23(10): 3276-3279
Viewed
Full text


Abstract