Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 195-197    DOI:
Original Articles |
Fully Developed Convective Heat Transfer of Power Law Fluids in a Circular Tube
ZHENG Lian-Cun1;ZHANG Xin-Xin2;MA Lian-Xi3
1Department of Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 1000832School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 1000833Department of Physics, Texas A & M University, College Station, Texas 77843-4242, USA
Cite this article:   
ZHENG Lian-Cun, ZHANG Xin-Xin, MA Lian-Xi 2008 Chin. Phys. Lett. 25 195-197
Download: PDF(160KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a theoretical analysis for fully developed convective heat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical solution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0<n<0.1. However, for n>0.5, the Nusselt number decreases monotonically with the increasing n, and for n>20, the values of Nusselt number approach a constant.
Keywords: 47.50.+d      47.27.Te      44.15.+a      44.10.+i     
Received: 30 August 2007      Published: 27 December 2007
PACS:  47.50.+d  
  47.27.te (Turbulent convective heat transfer)  
  44.15.+a (Channel and internal heat flow)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/0195
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Lian-Cun
ZHANG Xin-Xin
MA Lian-Xi
[1] Schlichting H 1979 Boundary Layer Theory (New York:McGraw-Hill)
[2] Schowalter W R 1960 AIChE J. 6 24
[3] Acrivos A, Shah M J and Petersen E E 1960 AIChE J. 6312
[4] Nachman A and Callegari A 1980 SIAM J. Appl. Math. 38275
[5] Howell T G, Jeng D R and De Witt KJ 1997 Int. J. Heat MassTransfer. 40 1853
[6] Rao J H, Jeng D R and De Witt KJ 1999 Int. J. Heat and MassTransfer. 42 2837
[7] Wang T Y 1995 Int. Comm. Heat and Mass Transfer. 22 369
[8] Wang T Y 1995 Int. J. Heat and Fluid Flow. 16 56
[9] Hady F M 1995 Appl. Math. Comp. 68 105
[10] Hassanien I A, Abdullah A A and Gorla R SR 1998 Math. Comput.Model. 28 105
[11] Kumari K, Pop I and Takhar H S 1997 Int. J. Heat and FluidFlow. 18 625
[12] Akcay M and Adil Y\"ukselen M 1999 Arch. Appl. Mech. 69 215
[13] Ahmet Pinarbasi and Muharrem Imal 2005 J. Non-Newtonian FluidMech. 127 67
[14] Chen Chien-Hisn 2005 J. Non-Newtonian Fluid Mech. 135128
[15] Huang S B and Li Z M 2004 Adv. Multiphase Flow. 2 403
[16] Wang C and Pop I 2006 J. Non-Newtonian Fluid Mech. 138161
[17] Zheng L C and He J C 1999 Dyn. Sys. Appl. 8 133
[18] Zheng L C, Zhang X X and He J C 2003 Chin. Phys. Lett. 20 83
[19] Zheng L C, Zhang X X and He J C 2003 Chin. Phys. Lett. 20 858
[20] Zheng L C, Zhang X X and He J C 2007 Math. Comput.Model. 45 387
[21] Zheng L C, Zhang X X and Lu C Q 2006 Chin. Phys. Lett. 23 3301
Related articles from Frontiers Journals
[1] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 195-197
[2] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 195-197
[3] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 195-197
[4] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 195-197
[5] XU Wen, CHEN Wei-Zhong**, TAO Feng, . Thermal Rectification in Graded Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2011, 28(12): 195-197
[6] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 195-197
[7] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 195-197
[8] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 195-197
[9] TAO Jian-Jun, TAN Wen-Chang. Relaxation Oscillation of Thermal Convection in Rotating Cylindrical Annulus[J]. Chin. Phys. Lett., 2010, 27(3): 195-197
[10] CHEN Zhao-Jiang, ZHANG Shu-Yi. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization[J]. Chin. Phys. Lett., 2010, 27(2): 195-197
[11] H. Saleh, I. Hashim. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels[J]. Chin. Phys. Lett., 2010, 27(2): 195-197
[12] LI Hai-Bin, NIE Qing-Miao, XIN Xiao-Tian. Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient[J]. Chin. Phys. Lett., 2009, 26(7): 195-197
[13] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 195-197
[14] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 195-197
[15] ZHANG Xing, TAKAHASHI Koji, FUJII Motoo. Charge and Heat Transport in Polycrystalline Metallic Nanostructures[J]. Chin. Phys. Lett., 2008, 25(9): 195-197
Viewed
Full text


Abstract