Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 616-619    DOI:
Original Articles |
Fractal Analysis of Power-Law Fluid in a Single Capillary
YUN Mei-Juan;YU Bo-Ming;Xu Peng;CAI Jian-Chao
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
YUN Mei-Juan, YU Bo-Ming, Xu Peng et al  2008 Chin. Phys. Lett. 25 616-619
Download: PDF(129KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The fractal expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fractal nature of tortuous capillaries. Every parameter in the proposed expressions has clear physical
meaning. The flow rate and hydraulic conductivity for power-law fluids are found to be related to the tortuosity fractal dimension and the power-law index. The flow rate for power-law fluids increases with the increasing power-law index but decreases with the increasing tortuosity fractal dimension. Good agreement between the model predictions for flow in a fractal capillary and in a converging--diverging duct is obtained. The results suggest that the
fractal capillary model can be used to model the power-law fluids with different rheological properties.
Keywords: 47.55.Mh      47.50.+d      47.53.+n     
Received: 11 May 2007      Published: 30 January 2008
PACS:  47.55.Mh  
  47.50.+d  
  47.53.+n (Fractals in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0616
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUN Mei-Juan
YU Bo-Ming
Xu Peng
CAI Jian-Chao
[1] Feng S X and Fu S 2007 Chin. Phys. Lett. 24759
[2] Zheng L C, Zhang X X and Lu C Q 2006 Chin. Phys.Lett. 23 3301
[3] Machac I et al 1998 Chem. Eng. Proc. 37 169
[4] Woods J K et al 2003 J. Non-Newtonian Fluid Mech. 111 211
[5] Balhoff M T and Thompson K E 2006 Chem. Eng. Sci. 61 698
[6] Wheatcraft S W and Tyler S W 1988 Water Resour. Res. 24 566
[7] Yu B M and Cheng P 2002 Int. J. Heat Mass Transfer 45 2983
[8] Govier G W and Aziz K 1972 The Flow of ComplexMixtures in Pipes (New York: Krieger)
[9] Yu B M and Li J H 2004 Chin. Phys. Lett. 211569
[10] Yu B M 2005 Chin. Phys. Lett. 22 158[1] Feng S X and Fu S 2007 Chin. Phys. Lett. 24759
[2] Zheng L C, Zhang X X and Lu C Q 2006 Chin. Phys.Lett. 23 3301
[3] Machac I et al 1998 Chem. Eng. Proc. 37 169
[4] Woods J K et al 2003 J. Non-Newtonian Fluid Mech. 111 211
[5] Balhoff M T and Thompson K E 2006 Chem. Eng. Sci. 61 698
[6] Wheatcraft S W and Tyler S W 1988 Water Resour. Res. 24 566
[7] Yu B M and Cheng P 2002 Int. J. Heat Mass Transfer 45 2983
[8] Govier G W and Aziz K 1972 The Flow of ComplexMixtures in Pipes (New York: Krieger)
[9] Yu B M and Li J H 2004 Chin. Phys. Lett. 211569
[10] Yu B M 2005 Chin. Phys. Lett. 22 158
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 616-619
[2] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 616-619
[3] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 616-619
[4] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 616-619
[5] ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li, YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis[J]. Chin. Phys. Lett., 2008, 25(5): 616-619
[6] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 616-619
[7] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 616-619
[8] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 616-619
[9] ZHENG Lian-Cun, ZHANG Xin-Xin, MA Lian-Xi. Fully Developed Convective Heat Transfer of Power Law Fluids in a Circular Tube[J]. Chin. Phys. Lett., 2008, 25(1): 616-619
[10] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 616-619
[11] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 616-619
[12] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 616-619
[13] YANG Er-Long, SONG Kao-Ping. Displacement Mechanism of Polymer Flooding by Molecular Tribology[J]. Chin. Phys. Lett., 2006, 23(9): 616-619
[14] ZHANG Ji-Cheng, LIU Li, SONG Kao-Ping. Neural Approach for Calculating Permeability of Porous Medium[J]. Chin. Phys. Lett., 2006, 23(4): 616-619
[15] JIANG Ren-Jie, SONG Fu-Quan, LI Hua-Mei. Flow Characteristics of Deionized Water in Microtubes[J]. Chin. Phys. Lett., 2006, 23(12): 616-619
Viewed
Full text


Abstract