Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 658-660    DOI:
Original Articles |
Specific Heat of Rhombohedral Polymeric C60 in Temperature Range 300--2K
CUI Guang-Lei1;GU Min1;YU Yao1;XU Xi-Bin1;WANG Li-Hang1;CHEN
Xiao1;FENG Duan1;TANG Tong Bor2
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 2100932Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong
Cite this article:   
CUI Guang-Lei, GU Min, YU Yao et al  2008 Chin. Phys. Lett. 25 658-660
Download: PDF(146KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polymerization of C60 is realized under high temperature and high pressure. X-ray diffraction reveals a rhombohedral lattice structure in the product, and
solid-state 13C nuclear magnetic resonance spectroscopy confirms the formation of sp3 bonds between C60 molecules. Specific heat is then measured over the temperature range of 300--2K. It is found that its specific heat values are significantly less than those in fullerite within the region of
80--2K, and this huge reduction is attributed to the suppression of intermolecular librational modes in polymerized C60. An excellent fit to the experimental data over the entire temperature range is provided by a model, which needs to include only three-dimensional and two-dimensional translational modes in various contributions at different temperatures.
Keywords: 65.40.Ba      61.48.+c      81.40.-z     
Received: 13 August 2007      Published: 30 January 2008
PACS:  65.40.Ba (Heat capacity)  
  61.48.+c  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0658
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CUI Guang-Lei
GU Min
YU Yao
XU Xi-Bin
WANG Li-Hang
CHENXiao
FENG Duan
TANG Tong Bor
[1] Kr{\"{atschmer W, Lamb L D, Fostiropoulous K and HufmanD R 1990 Nature 347 354
[2] Iwasa Y, Arima T, Fleming R M, Siegrist T, Zhou O, HaddonR C, Rothberg L J, Lyons K B, Carter Jr. H L, Hebard A F, Tycko R,Dabbagh G, Krajewski J J, Thomas G A and Yagi T 1994 Science 264 1570
[3] N{\'{u{\~{nez -Regueiro M, Marques L, Hodeau J L,B{\'{ethoux O and Perroux M 1995 Phys. Rev. Lett. 74278
[4] Oszlanyi G and Forro L 1995 Solid State Commun. 93 265
[5] Xu C H and Scuseria G E 1995 Phys. Rev. Lett. 74 274
[6] Andriotis A N, Menon M, Sheetz R M and Chernozatonskii L2003 Phys. Rev. Lett. 90 026801
[7] Okada S and Saito S 1997 Phys. Rev. B 55 4039
[8] Miyake T and Saito S 2003 Chem. Phys. Lett. 380 589
[9] Meletov K P and Kourouklis G A 2005 Chem. Phys.Lett. 403 338
[10] Nagel P, Pasler V, Lebedkin S, Soldatov A, Meingast C,Sundqvist B, Persson P-A, Tanaka T, Komatsu K, Buga S and Inaba A1999 Phys. Rev. B 60 16920
[11] Long V C, Musfeldt J L, Kamar{\'{as K, Adams G B, PageJ B, Iwasa Y and Mayo W E 2000 Phys. Rev. B 61 13191
[12] Chan J A, Montanari B, Gale J D, Bennington S M, Taylor JW and Harrison N M 2004 Phys. Rev. B 70 041403
[13] Olson J R, Topp K A and Pohl O 1993 Science 259 1145
[14] Fischer J E, McGhie A R, Estrada J K, Halu$\cdot$ska M,Kuzmany H and Meer H U 1996 Phys. Rev. B 53 11418
[15] Beyermann W P, Hundley M F and Thompson J D 1992 Phys. Rev. Lett. 68 2046
[16] Allen K and Hellman F 1999 Phys. Rev. B 6011765
[17] Tewari S P, Silotia P and Bera K 1998 Solid StateCommun. 107 129
[18] Inaba A, Matsuo T, Fransson {\AA and Sundqvist B 1999 J. Chem. Phys. 110 12226
[19] Goze C, Rachdi F, Hajji L, N{\'{u{\~{nez -Regueiro M,Marques L, Hodeau J L and Mehring M 1996 Phys. Rev. B 54R3676
[20] Rachdi F, Goze C, Hajji L, Thier K F, Zimmer G, Mehring Mand N{\'{u{\~{nez -Regueiro M 1997 Appl. Phys. A 64295
[21] Pintschovius L, Renker B, Gompf F, Heid R, Chaplot S L,Haluska M and Kuzmany H 1992 Phys. Rev. Lett. 69 2662
[22] Que W and Walker M B 1993 Phys. Rev. B 4813104
[23] Horoyski P J and Thewalt M L W 1993 Phys. Rev. B 48 11446
[24] Horoyski P J, Wolk J A and Thewalt M L W 1995 SolidState Commun. 93 575
[25] Copley J R D, Neumann D A, Cappelletti R L andKamitakahara W A 1992 J. Phys. Chem. Solids 53 1353
[26] Yu J, Bi L, Kalia R K and Vashishta P 1994 Phys.Rev. B 49 5008
Related articles from Frontiers Journals
[1] KE Hai-Bo,ZHAO Zuo-Feng,WEN Ping**,WANG Wei-Hua. Specific Heat in a Typical Metallic Glass Former[J]. Chin. Phys. Lett., 2012, 29(4): 658-660
[2] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 658-660
[3] WU Bin-Bin, PAN Feng-Ming**, YANG Yu-E . Annealing Effect of Pulsed Laser Deposited Transparent Conductive Ta-Doped Titanium Oxide Films[J]. Chin. Phys. Lett., 2011, 28(11): 658-660
[4] XU Wei-Wei, HU Lin-Hua, DAI Song-Yuan, ZHANG Chang-Neng, LUO Xiang-Dong, JING Wei-Ping. A Study on Porosity Distribution in Nanoporous TiO_2 Photoelectrodes for Output Performance of Dye-Sensitized Solar Cells[J]. Chin. Phys. Lett., 2010, 27(3): 658-660
[5] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 658-660
[6] N. Boonyopakorn, N. Sripongpun, C. Thanachayanont, S. Dangtip,. Effects of Substrate Temperature and Vacuum Annealing on Properties of ITO Films Prepared by Radio-Frquency Magnetron Sputtering[J]. Chin. Phys. Lett., 2010, 27(10): 658-660
[7] XU Guo-Liang, CHEN Jing-Dong, XIA Yao-Zheng, LIU Xue-Feng, LIU Yu-Fang, ZHANG Xian-Zhou. First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride[J]. Chin. Phys. Lett., 2009, 26(5): 658-660
[8] MU Gang, ZHU Xi-Yu, FANG Lei, SHAN Lei, REN Cong, WEN Hai-Hu. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements[J]. Chin. Phys. Lett., 2008, 25(6): 658-660
[9] PENG Xiao-Niu, LI Min, YU Liao, ZHANG Xian, ZHOU Li. Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films[J]. Chin. Phys. Lett., 2008, 25(11): 658-660
[10] PAN Rui-Qin, XU Zi-Jian, ZHU Zhi-Yuan. Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2007, 24(5): 658-660
[11] GUO Ming-Xiu, LI Jin-Dong, FU Wen-Qiang, SHI Xiang-Chun, HU Qi-Quan, CHEN Wei-Biao. A Kilowatt Diode-Pumped Solid-State Heat-Capacity Double-Slab Laser[J]. Chin. Phys. Lett., 2006, 23(9): 658-660
[12] FANG Jing-Hai, LIU Li-Wei, KONG Wen-Jie, CAI Jian-Zhen, LU Li. Hopping Conductivity in a Single-Walled Carbon Nanotube Network[J]. Chin. Phys. Lett., 2006, 23(4): 658-660
[13] FAN Zhen-Jun, JING Xiu-Nian, ZHANG Dian-Lin. Compositional Dependence of Electronic Specific Heat in AlCuCo Decagonal Quasicrystals: Evidence for the Hume--Rothery Mechanism of Phase Formation[J]. Chin. Phys. Lett., 2005, 22(7): 658-660
[14] ZOU Jun, ZHOU Sheng-Ming, LI Yang, WANG Jun, ZHANG Lian-Han, XU Jun. Spectra Analysis of a Novel Ti-Doped LiAlO2 Single Crystal[J]. Chin. Phys. Lett., 2005, 22(10): 658-660
[15] WANG Bao-Shan, SHI Xing-Jue, CHEN Yong, GE Hong-Kui, WONG Teng-Fong. Grain Crush and Its Evolution in Granular Material: a Two-Dimensional Distinct Element Model Approach[J]. Chin. Phys. Lett., 2004, 21(8): 658-660
Viewed
Full text


Abstract