Original Articles |
|
|
|
|
Specific Heat of Rhombohedral Polymeric C60 in Temperature Range 300--2K |
CUI Guang-Lei1;GU Min1;YU Yao1;XU Xi-Bin1;WANG Li-Hang1;CHEN Xiao1;FENG Duan1;TANG Tong Bor2 |
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 2100932Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong |
|
Cite this article: |
CUI Guang-Lei, GU Min, YU Yao et al 2008 Chin. Phys. Lett. 25 658-660 |
|
|
Abstract Polymerization of C60 is realized under high temperature and high pressure. X-ray diffraction reveals a rhombohedral lattice structure in the product, and solid-state 13C nuclear magnetic resonance spectroscopy confirms the formation of sp3 bonds between C60 molecules. Specific heat is then measured over the temperature range of 300--2K. It is found that its specific heat values are significantly less than those in fullerite within the region of 80--2K, and this huge reduction is attributed to the suppression of intermolecular librational modes in polymerized C60. An excellent fit to the experimental data over the entire temperature range is provided by a model, which needs to include only three-dimensional and two-dimensional translational modes in various contributions at different temperatures.
|
Keywords:
65.40.Ba
61.48.+c
81.40.-z
|
|
Received: 13 August 2007
Published: 30 January 2008
|
|
PACS: |
65.40.Ba
|
(Heat capacity)
|
|
61.48.+c
|
|
|
81.40.-z
|
(Treatment of materials and its effects on microstructure, nanostructure, And properties)
|
|
|
|
|
[1] Kr{\"{atschmer W, Lamb L D, Fostiropoulous K and HufmanD R 1990 Nature 347 354 [2] Iwasa Y, Arima T, Fleming R M, Siegrist T, Zhou O, HaddonR C, Rothberg L J, Lyons K B, Carter Jr. H L, Hebard A F, Tycko R,Dabbagh G, Krajewski J J, Thomas G A and Yagi T 1994 Science 264 1570 [3] N{\'{u{\~{nez -Regueiro M, Marques L, Hodeau J L,B{\'{ethoux O and Perroux M 1995 Phys. Rev. Lett. 74278 [4] Oszlanyi G and Forro L 1995 Solid State Commun. 93 265 [5] Xu C H and Scuseria G E 1995 Phys. Rev. Lett. 74 274 [6] Andriotis A N, Menon M, Sheetz R M and Chernozatonskii L2003 Phys. Rev. Lett. 90 026801 [7] Okada S and Saito S 1997 Phys. Rev. B 55 4039 [8] Miyake T and Saito S 2003 Chem. Phys. Lett. 380 589 [9] Meletov K P and Kourouklis G A 2005 Chem. Phys.Lett. 403 338 [10] Nagel P, Pasler V, Lebedkin S, Soldatov A, Meingast C,Sundqvist B, Persson P-A, Tanaka T, Komatsu K, Buga S and Inaba A1999 Phys. Rev. B 60 16920 [11] Long V C, Musfeldt J L, Kamar{\'{as K, Adams G B, PageJ B, Iwasa Y and Mayo W E 2000 Phys. Rev. B 61 13191 [12] Chan J A, Montanari B, Gale J D, Bennington S M, Taylor JW and Harrison N M 2004 Phys. Rev. B 70 041403 [13] Olson J R, Topp K A and Pohl O 1993 Science 259 1145 [14] Fischer J E, McGhie A R, Estrada J K, Halu$\cdot$ska M,Kuzmany H and Meer H U 1996 Phys. Rev. B 53 11418 [15] Beyermann W P, Hundley M F and Thompson J D 1992 Phys. Rev. Lett. 68 2046 [16] Allen K and Hellman F 1999 Phys. Rev. B 6011765 [17] Tewari S P, Silotia P and Bera K 1998 Solid StateCommun. 107 129 [18] Inaba A, Matsuo T, Fransson {\AA and Sundqvist B 1999 J. Chem. Phys. 110 12226 [19] Goze C, Rachdi F, Hajji L, N{\'{u{\~{nez -Regueiro M,Marques L, Hodeau J L and Mehring M 1996 Phys. Rev. B 54R3676 [20] Rachdi F, Goze C, Hajji L, Thier K F, Zimmer G, Mehring Mand N{\'{u{\~{nez -Regueiro M 1997 Appl. Phys. A 64295 [21] Pintschovius L, Renker B, Gompf F, Heid R, Chaplot S L,Haluska M and Kuzmany H 1992 Phys. Rev. Lett. 69 2662 [22] Que W and Walker M B 1993 Phys. Rev. B 4813104 [23] Horoyski P J and Thewalt M L W 1993 Phys. Rev. B 48 11446 [24] Horoyski P J, Wolk J A and Thewalt M L W 1995 SolidState Commun. 93 575 [25] Copley J R D, Neumann D A, Cappelletti R L andKamitakahara W A 1992 J. Phys. Chem. Solids 53 1353 [26] Yu J, Bi L, Kalia R K and Vashishta P 1994 Phys.Rev. B 49 5008 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|