Chin. Phys. Lett.  2010, Vol. 27 Issue (6): 064302    DOI: 10.1088/0256-307X/27/6/064302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Asymmetric Oscillation and Acoustic Response from an Encapsulated Microbubble Bound within a Small Vessel

HUANG Bei1, ZHENG Hai-Rong2, ZHANG Dong1

1Institute of Acoustics, Key Laboratory of Modern Acoustics (Ministry of Education), Nanjing University, Nanjing 210093 2Paul C. Lauterbur Research Center for Biomedical Imaging, IBHE, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055
Cite this article:   
HUANG Bei, ZHENG Hai-Rong, ZHANG Dong 2010 Chin. Phys. Lett. 27 064302
Download: PDF(449KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Understanding the dynamics of ultrasonic excited microbubbles bound within microvessels is of significance for novel ultrasonic imaging, drug delivery and therapeutic biomedical applications. A finite element model (FEM) considering acoustic nonlinearity is developed to describe the asymmetric oscillation and acoustic response from an encapsulated microbubble bound within a small vessel. Numerical simulation is performed for a 2 μm encapsulated microbubble bound within 8-20 μm vessels using 2 MHz ultrasound excitation. The oscillation of the bound microbubble becomes more asymmetric under larger ultrasound pressure or within the smaller vessel. The normalized difference between the major and minor axes of epllipse is estimated to be 2.16% for the 8 μm vessel at an acoustic pressure of 0.5 MPa. In addition, the fundamental component of the acoustic scattering from the bound microbubble is enhanced by 6 dB while the second harmonic component is decreased by approximately 29 dB compared with the free microbubble.

Keywords: 43.25.+y      43.80.+p     
Received: 03 March 2010      Published: 25 May 2010
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/6/064302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I6/064302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Bei
ZHENG Hai-Rong
ZHANG Dong
[1] Zhang D et al 2007 Phys. Med. Biol. 52 5531
[2] Tu J, Guan J F et al 2008 Chin. Phys. Lett. 25 172
[3] Qin S P et al 2009 Phys. Med. Biol. 54 R27
[4] Sassaroli E and Hynynen K 2004 J. Acoust. Soc. Am. 115 3235
[5] Hu Y, Zhang D et al 2009 J. Acoust. Soc. Am. 125 1410
[6] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[7] Hoff L, Sontum P C and Hovem J M 2000 J. Acoust. Soc. Am. 107 2272
[8] Gong Y J, Zhang D, Gong X F, Tan K B and Liu Z 2006 Chin. Phys. 15 1526.
[9] Zhao S K, Kruse D E, Ferrara K W and Dayton P A 2006 J. Acoust. Soc. Am. 120 EL63
[10] Zhao S K, Ferrara K W and Dayton P A 2005 Appl. Phys. Lett. 87 134103
[11] Dassault Systémes SIMULIA 2009 ABAQUS Theory Manual v6.9
[12] Qin S P, Hu Y T and Jiang Q 2006 IEEE Trans. on Ultrason. Ferroelectr. Freq. Control. 53 1322
[13] Qin S P and Ferrara K W 2006 Phys. Med. Biol. 51 5065
Related articles from Frontiers Journals
[1] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 064302
[2] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun . Nondestructive Characterization of Quantitative Bonding Strength at a Bonded Solid-Solid Interface[J]. Chin. Phys. Lett., 2011, 28(8): 064302
[3] DENG Ming-Xi**, XIANG Yan-Xun, LIU Liang-Bing . Time-Domain Second-Harmonic Generation of Primary Lamb-Wave Propagation in an Elastic Plate[J]. Chin. Phys. Lett., 2011, 28(7): 064302
[4] QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong** . Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles[J]. Chin. Phys. Lett., 2011, 28(4): 064302
[5] YU Li-Li**, SHOU Wen-De, HUI Chun** . Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer[J]. Chin. Phys. Lett., 2011, 28(10): 064302
[6] LIU Zhen-Bo, FAN Ting-Bo, GUO Xia-Sheng, ZHANG Dong. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound[J]. Chin. Phys. Lett., 2010, 27(9): 064302
[7] FAN Li, ZHANG Shu-Yi, ZHANG Hui. Influence of the Nonlinearity of Loudspeakers on the Performance of Thermoacoustic Refrigerators Driven by Current and Voltage[J]. Chin. Phys. Lett., 2010, 27(7): 064302
[8] YANG Di-Wu, XING Da, ZHAO Xue-Hui, PAN Chang-Ning, FANG Jian-Shu. A Combined Reconstruction Algorithm for Limited-View Multi-Element Photoacoustic Imaging[J]. Chin. Phys. Lett., 2010, 27(5): 064302
[9] XIANG Yan-Xun, XUAN Fu-Zhen, DENG Ming-Xi. Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves[J]. Chin. Phys. Lett., 2010, 27(1): 064302
[10] Chung-Seok KIM, Cliff J. LISSENDEN. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy[J]. Chin. Phys. Lett., 2009, 26(8): 064302
[11] FAN Ting-Bo, LIU Zhen-Bo, ZHANG Zhe, ZHANG Dong, GONG Xiu-Fen. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound[J]. Chin. Phys. Lett., 2009, 26(8): 064302
[12] AN Zhi-Wu, WANG Xiao-Min, LI Ming-Xuan, DENG Ming-Xi, MAO Jie. Theoretical Development of Nonlinear Spring Models for the Second Harmonics on an Interface between Two Solids[J]. Chin. Phys. Lett., 2009, 26(11): 064302
[13] HU Yi, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographical Bottom under Vertical Vibration[J]. Chin. Phys. Lett., 2009, 26(11): 064302
[14] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun. A Unique Method to Describe the Bonding Strength in a Bonded Solid-S-olid Interface by Contact Acoustic Nonlinearity[J]. Chin. Phys. Lett., 2009, 26(1): 064302
[15] LIU Ming-He, ZHANG Dong, GONG Xiu-Fen. Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle[J]. Chin. Phys. Lett., 2007, 24(8): 064302
Viewed
Full text


Abstract