Chin. Phys. Lett.  2000, Vol. 17 Issue (10): 708-710    DOI:
Original Articles |
Diffusion in a Symplectic Map with Application to Asteroid Motion
ZHOU Li-Yong;SUN Yi-Sui;ZHOU Ji-Lin
Department of Astronomy, Nanjing University, Nanjing 210093
Cite this article:   
ZHOU Li-Yong, SUN Yi-Sui, ZHOU Ji-Lin 2000 Chin. Phys. Lett. 17 708-710
Download: PDF(243KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In studying a 2-dimensional syrnplectic map, the exponential law and algebraic law are observed in the diffusion of orbits in the phase space. The diffusion time in the vicinity of an island is investigated carefully and a logarithm law is found for the first time. The distribution of asteroids in the main belt and the diffusion velocities in 3:2 and 4:3 resonances are discussed using this map.
Keywords: 05.45.-a      95.10.Ce      96.30.Ys     
Published: 01 October 2000
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  95.10.Ce (Celestial mechanics (including n-body problems))  
  96.30.Ys (Asteroids, meteoroids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I10/0708
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Li-Yong
SUN Yi-Sui
ZHOU Ji-Lin
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 708-710
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 708-710
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 708-710
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 708-710
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 708-710
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 708-710
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 708-710
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 708-710
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 708-710
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 708-710
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 708-710
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 708-710
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 708-710
[14] LI Gen, CHEN Chu-Xin**. An Internal Heating Model to Elucidate the Shape of a Small Planetary Body[J]. Chin. Phys. Lett., 2012, 29(1): 708-710
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 708-710
Viewed
Full text


Abstract