Chin. Phys. Lett.  1999, Vol. 16 Issue (6): 391-393    DOI:
Original Articles |
Exact Solution to Landau System with Time-Dependent Electromagnetic Fields
YING Zu-jian1;WANG Shun-jin1,2;ZHANG Wen-zhong1
1Department of Modern Physics, Lanzhou University, Lanzhou 730000 1Institute of Modern Physics, Southwest Jiaotong University, Chengdu 610031
Cite this article:   
YING Zu-jian, WANG Shun-jin, ZHANG Wen-zhong 1999 Chin. Phys. Lett. 16 391-393
Download: PDF(171KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Algebraic dynamics is applied to treat Landau system. We consider the case with the vector potential A = B(t)(-y, 0,0) and the scalar potential Ф = -E(t)y +k(t)y2, and find that the system has the dynamical algebra su (1,1) h (3). With a gauge transformation the exact solutions of the system are found, of which the quantum motion in y-direction represents a harmonic oscillator with a moving origin and a varying amplitude of width, the paramertes of the gauge transformation are related to the amplitude, the velocity potential and the expectations of y and py, respectively. The energy of the system, the fluctuations of dynamical variables, the transition amplitudes between different states, and the Berry phase are calculated.

Keywords: 03.65.Fd     
Published: 01 June 1999
PACS:  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I6/0391
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YING Zu-jian
WANG Shun-jin
ZHANG Wen-zhong
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 391-393
[2] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 391-393
[3] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 391-393
[4] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 391-393
[5] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 391-393
[6] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 391-393
[7] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 391-393
[8] WANG Xue-Hong, LIU Yu-Bin. Realizing the Underlying Quantum Dynamical Algebra SU(2) in Morse Potential[J]. Chin. Phys. Lett., 2010, 27(2): 391-393
[9] ZHANG Min-Cang**, AN Bo . Analytical Solutions of the Manning-Rosen Potential In the Tridiagonal Program[J]. Chin. Phys. Lett., 2010, 27(11): 391-393
[10] Srinivasa Rao Karumuri. Vibrational Spectra of Distorted Structure Molecules by Using Lie Algebraic Techniques: an Application to Copper and Magnesium Octaethyl Porphyrin[J]. Chin. Phys. Lett., 2010, 27(10): 391-393
[11] Srinivasa Rao KARUMURI, Joydeep CHOUDHURY, Nirmal Kumar SARKAR, Ramendu BHATTACHARJEE. Vibrational Spectroscopy of Stretching and Bending Modes of Nickel Tetraphenyl Porphyrin: an Algebraic Approach[J]. Chin. Phys. Lett., 2009, 26(9): 391-393
[12] L. Krache, M. Maamache, Y. Saadi, A. Beniaiche. Generalized Coherent States of a Particle in a Time-Dependent Linear Potential[J]. Chin. Phys. Lett., 2009, 26(7): 391-393
[13] Joydeep Choudhury, Nirmal Kumar Sarkar, Srinivasa Rao Karumuri, Ramendu Bhattacharjee. Vibrational Spectroscopy of CH/CD Stretches in Propadiene: An Algebraic Approach[J]. Chin. Phys. Lett., 2009, 26(2): 391-393
[14] Eser Olgar. An Alternative Method for Calculating Bound-State of Energy Eigenvalues of Klein-Gordon for Quasi-exactly Solvable Potentials[J]. Chin. Phys. Lett., 2009, 26(2): 391-393
[15] CHEN Wei, HE Yan, GUO Hao. Quantum Correlation Coefficients for Angular Coherent States[J]. Chin. Phys. Lett., 2009, 26(10): 391-393
Viewed
Full text


Abstract