Chin. Phys. Lett.  1997, Vol. 14 Issue (8): 561-564    DOI:
Original Articles |
Exact Travelling Wave Solutions of Discrete Planar Velocity Boltzmann Models
LÜ Xian-qing
Department of Applied Mathematics, Tsinghua University, Beijing 100084
Cite this article:   
LÜ, Xian-qing 1997 Chin. Phys. Lett. 14 561-564
Download: PDF(148KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By investigating the discrete planar Boltzmann models: the square 4-velocity and the hexagonal 6-velocity models, exact travelling wave solutions can be studied in a concise way. And their exact travelling wave solutions can only be monotonic travelling wave . The conclusions of the precursors need ameliorating. This suggests a general method for obtaining nontrivial exact solutions for the similar discrete Boltzmann equation.
Keywords: 02.90.+p      05.20.Dd      02.30.Hq     
Published: 01 August 1997
PACS:  02.90.+p (Other topics in mathematical methods in physics)  
  05.20.Dd (Kinetic theory)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1997/V14/I8/0561
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xian-qing
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 561-564
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 561-564
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 561-564
[4] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 561-564
[5] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 561-564
[6] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 561-564
[7] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 561-564
[8] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 561-564
[9] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 561-564
[10] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 561-564
[11] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 561-564
[12] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 561-564
[13] FAN Hong-Yi, REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel[J]. Chin. Phys. Lett., 2010, 27(5): 561-564
[14] LV Cui-Hong, FAN Hong-Yi,. A New Kind of Integration Transformation in Phase Space Related to Two Mutually Conjugate Entangled-State Representations and Its Uses in Weyl Ordering of Operators[J]. Chin. Phys. Lett., 2010, 27(5): 561-564
[15] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 561-564
Viewed
Full text


Abstract