Chin. Phys. Lett.  2005, Vol. 22 Issue (8): 2047-2051    DOI:
Original Articles |
The Branch Process of Skyrmions in the Fractional Quantum Hall Effect
DUAN Yi-Shi;ZHANG Xiu-Ming;TIAN Miao
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
DUAN Yi-Shi, ZHANG Xiu-Ming, TIAN Miao 2005 Chin. Phys. Lett. 22 2047-2051
Download: PDF(216KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The branch process of the skyrmions in the fractional quantum Hall effect is studied from the Ф-mapping topological current. It is shown that there exists a field zeta whose Hopf indices and Brouwer degrees characterize the topological structure of the skyrmions. Based on the bifurcation theory of the Ф-mapping theory, it is found that the skyrmions can be generated or annihilated at the limit points and they encounter, split or merge at the bifurcation points of the new field zeta.
Keywords: 73.43.-f      47.20.Ky      02.40.Pc     
Published: 01 August 2005
PACS:  73.43.-f (Quantum Hall effects)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  02.40.Pc (General topology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I8/02047
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DUAN Yi-Shi
ZHANG Xiu-Ming
TIAN Miao
Related articles from Frontiers Journals
[1] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2047-2051
[2] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 2047-2051
[3] ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect[J]. Chin. Phys. Lett., 2010, 27(7): 2047-2051
[4] HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge[J]. Chin. Phys. Lett., 2010, 27(6): 2047-2051
[5] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 2047-2051
[6] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 2047-2051
[7] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 2047-2051
[8] WU Zhao-Yan, FU Xin-Chu. Topology Identification of General Dynamical Network with Distributed Time Delays[J]. Chin. Phys. Lett., 2009, 26(7): 2047-2051
[9] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 2047-2051
[10] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 2047-2051
[11] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 2047-2051
[12] ZHANG Qi-Chang, WANG Wei, LI Wei-Yi. Heteroclinic Bifurcation of Strongly Nonlinear Oscillator[J]. Chin. Phys. Lett., 2008, 25(5): 2047-2051
[13] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 2047-2051
[14] ZHONG Wo-Jun, DUAN Yi-Shi. Topological Quantization of Instantons in SU(2) Yang--Mills Theory[J]. Chin. Phys. Lett., 2008, 25(5): 2047-2051
[15] TU Tao, ZHAO Yong-Jie, HAO Xiao-Jie, WANG Cheng-You, GUO Guang-Can, GUO Guo-Ping. Localization Exponent for the Second Landau Level in the Quantum Hall Effect[J]. Chin. Phys. Lett., 2008, 25(3): 2047-2051
Viewed
Full text


Abstract